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Introduction

« Si vous touchez aux mathématiques, vous ne devez être ni pressés, ni cupides,
fussiez-vous roi ou reine. »

Euclide d’Alexandrie (330 av. J.-C. − 270 av. J.-C.)

Ce mémoire est un résumé du travail que j’ai effectué à l’Institut Montpelliérain Alexander
Grothendieck dans le cadre de mon stage de fin d’études. Notre document porte ici sur l’étude
des équations aux dérivées partielles, en plus particulier l’étude de méthodes numériques d’ordres
élevées, et leur application à des équations issues de la mécanique des fluides en eaux peu profondes.

Le premier chapitre introduit aux lecteurs les différentes méthodes sur lesquelles nous avons travaillé
: y sont présentés leurs intérêts, leurs qualités mais aussi leurs limites. La seconde partie met en
place les éléments mathématiques nécessaires à la compréhension correcte des chapitres suivants,
qui concernent l’application des méthodes de stabilisation de François Vilar, introduites dans [4],
sur une loi de conservation scalaire puis sur les équations de Saint-Venant. Sont également présent
deux annexes : la première a été rédigée au début du stage à l’époque où je m’initiais aux méthodes
Galerkin Discontinu, et la seconde est un travail théorique portant sur les équations de Saint-Venant
et leur obtention à partir des équations d’Euler.

J’ai la chance de pouvoir considérer cet humble travail comme le début de ma vie de chercheur, car
j’ai l’opportunité de continuer sur ce sujet-là en thèse. Je m’excuse donc d’avance si ce manuscrit
est incomplet par moment et/ou développe des pistes non exploités par la suite ; elles le seront je
l’espère pendant les trois prochaines années.

Même si je n’ai passé que quatre mois à leur côté, j’ai déjà une immense reconnaissance pour
mes trois encadrants. En effet, j’ai rajouté au duo initial Ali Haidar, ancien thésard à l’IMAG,
actuellement en post-doc à Nice, qui a pris de son temps pour m’aider alors qu’il n’en avait nulle-
ment l’obligation. Merci Ali, et j’espère qu’on va pouvoir continuer à collaborer ensemble.
Puis évidemment je souhaite terminer en remercier Fabien et François ; merci pour votre gentillesse,
votre temps, et votre confiance.
Mes premiers pas dans le monde de la recherche s’inscrivent ici, aux côtés de trois scientifiques bril-
lants et bienveillants, et j’ai hâte d’apprendre à marcher à leurs côtés avant d’apprendre à courir.
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Section 1

Notions & motivations.

In the following section, we provide a brief description of the various components and techniques
used to describe our numerical approach in this work.

1.1 Shallow-Water equations.

The Shallow-Water equations are a collection of partial differential equations that describe the be-
havior of fluids in shallow areas such as rivers, lakes, and coastal areas. Mathematicians, engineers,
and scientists are all interested to them because they provide a fundamental framework for under-
standing fluid dynamics in a wide range of practical applications. SW equations were developed in
the mid-nineteenth century by mathematicians and physicists who wanted to understand the behav-
ior of water waves, obtained by deriving the full Navier-Stokes equations (see Appendice B), which
describe fluid motion in general. The fluid was simplified by assuming that it is incompressible and
inviscid, and that its depth is much smaller than its horizontal extent.

Given a smooth parametrization of the topography b : R → R, denoting by H the water height,
u the horizontal velocity and q = Hu the horizontal discharge, the pre-balanced Nonlinear Shallow-
Water equations may be written as follows :

∂tv + ∂xF(v, b) = B(v, ∂xb),

where v : R × R+ → Θ gathers the flow’s conservative variables and is assumed to take values in
the convex and open set

Θ = {(η, q) ∈ R2 | H := η − b ≥ 0},

where F : Θ×R → R2 is the nonlinear flux function and B : Θ×R → R2 is the topography source
term, defined as follows

v = (η, q)T , F(v, b) =

󰀕
q, uq +

1

2
gη(η − 2b)

󰀖T

, B(v, ∂xb) = (0,−gη∂xb)
T .
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Chapter 1 : Notions & motivations.

Those equations are hyperbolic, which means that information travels at a finite speed through the
fluid, and nonlinear, which means that the fluid’s behavior can be highly complex and difficult to
predict. In addition, the equations are also conservative, which means that the total amount of
fluid in a given region is constant over time.

SW equations have a wide range of practical applications in various fields, for example :

– In civil engineering, the equations are used to design and optimize hydraulic structures such
as dams, canals, and water treatment plants. They are also used to study the effects of floods,
tsunamis, and other extreme weather events on coastal infrastructure ;

– In environmental science, those equations are used to model the behavior of water and sediment
in rivers, lakes, and estuaries. This allows scientists to study the impact of pollution, erosion,
and other environmental factors on aquatic ecosystems. The equations are also used to study
the behavior of ocean currents and their impact on global climate patterns ;

– In the energy sector, they can be used to model the behavior of fluid flows in oil and gas
pipelines. This allows engineers to design more efficient and reliable pipelines that can trans-
port fluids over long distances. The equations are also used to model the behavior of wind and
tidal energy systems, which are becoming increasingly important sources of renewable energy.

Figure 1.1: The Great Wave of Kanagawa, Hokusai, 1830.

To summarize, the Shallow-Water equations represent a fundamental framework for understand-
ing fluid dynamics in shallow regions, and they have practical applications in a wide range of fields.
They are a testament to the power of mathematical modeling and its ability to provide insights into
complex physical systems. As such, they represent an important area of research and development
that will continue to be of great significance in the years to come. The curious reader will find
information about how we can derive Euler’s equations to obtain SW in the appendice (B).
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Chapter 1 : Notions & motivations.

1.2 Discontinuous Galerkin methods.

The Discontinuous Galerkin (dG) method is a numerical scheme for solving partial differential
equations. It was first introduced by Reed and Hill in 1973, and has since become a popular
method for solving a wide range of problems, from fluid dynamics to electromagnetics. The dG
method is based on the Galerkin method, which involves approximating a solution to a PDE as a
linear combination of basis functions. However, unlike the continuous Galerkin method, which uses
continuous basis functions, the dG method uses discontinuous basis functions. This allows for a
more flexible and accurate approximation of the solution, particularly in areas with high gradients
or shocks.

Figure 1.2: Differences between continuous and discontinuous Galerkin methods.

One of the main interests of the dG method is its ability to handle complex geometries and
domains with irregular boundaries. This is because the method is naturally suited to handling non-
uniform meshes and allows for the use of unstructured grids. The dG method is also well-suited to
handle problems with multiple scales, such as those found in fluid dynamics or electromagnetism.
Compared to other numerical methods, such as finite difference and finite element methods, the dG
method has several advantages. For one, the dG method is more accurate and robust than other
methods in areas with strong discontinuities or singularities.
This is because it can accurately capture the solution in these areas, whereas other methods may
require finer mesh resolutions or more complex formulations. Another advantage of this method is
its ability to handle conservation laws. The dG method naturally conserves mass, momentum, and
energy, which is important for many applications, such as fluid dynamics and electromagnetism. In
contrast, other methods may require additional stabilization techniques to enforce conservation.

1.3 Finite-Volume local subcell correction.

While the dG method has several advantages over other numerical methods, such as the Finite-
Volume (FV) method, it also has some drawbacks that make it less robust in certain scenarios.
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Chapter 1 : Notions & motivations.

One of the main disadvantages of the dG method is its difficulty in handling strong shocks and
discontinuities. This is because the method relies on discontinuous basis functions, which can lead
to numerical oscillations and instability in the presence of too strong gradients. In contrast, the FV
method uses piecewise constant reconstructions, which are better suited to capturing shocks and
discontinuities.

Another drawback of the dG method is its computational expense. The dG method can be
computationally expensive, particularly for high-order methods or complex geometries, due to the
need for a large number of degrees of freedom and the cost of computing numerical fluxes at
the element interfaces. In contrast, the FV method is generally more computationally efficient,
particularly for lower-order methods and simpler geometries. Additionally, the dG method requires
careful treatment of numerical fluxes at the interfaces between elements to ensure accuracy and
stability. This can be particularly challenging in complex geometries or in the presence of strong
shocks or discontinuities. In contrast, the FV method typically relies on simple numerical fluxes
that are easy to implement and more robust in these scenarios.

Another challenging problem, focusing on the NSW equations, is the preservation of the set of
admissible states (2.2) at the discrete level, which is closely related to the issue of the occurrence and
propagation of wet/dry fronts that may occur in dam-breaks, flood-waves, or run-up over coastal
shores. As a result, while maintaining the water-height positivity at the discrete level is a minimal
nonlinear stability requirement, this is clearly a difficult task when high-order polynomials are
used within mesh elements and standard (non-stabilized) dG methods may produce negative values
for the water-height H in the vicinity of dry areas. In general, robustness issues may be among
the most significant remaining challenges for the use of high-order methods in realistic problems
in many domains of application, and in recent years, several approaches have been proposed to
stabilize high-order approximations.

In this internship, we focused on Finite Volume Subcell correction, introduced by François Vilar.
The primary aim of this correction method is to maintain the high accuracy and precise subcell
resolution of dG schemes. Therefore, an a posteriori correction will be used only when necessary
at the subcell scale, while ensuring the conservation of the scheme. To achieve this, the dG scheme
will be reformulated as a subcell FV scheme using the correct numerical flux, resulting in the dG
reconstructed flux. This forms the basis of the limiter framework.

At each time step, a candidate solution is computed, and if it meets certain criteria (such as
being positive and non-oscillating), the solution is accepted and the computation continues. If the
solution is not admissible, the previous time step is returned to, and a local correction is made at
the subcell scale. This is called a posteriori limitation. Each cell is divided into subcells, and if a
subcell’s solution is detected as problematic, a robust first-order or second-order TVD numerical flux
is used on the subcell boundaries. If the subcell solution is admissible, the high-order reconstructed
flux is used, retaining the dG scheme’s accurate resolution and conservation properties. Only the
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Chapter 1 : Notions & motivations.

Figure 1.3: Example of subcell mean values on mesh ωi := [x1− 1
2
, x1+ 1

2
].

solution inside troubled subcells and its first neighbors are recomputed, while the rest of the solution
remains unchanged. This a posteriori approach has been used by Ali Haidar in his PhD to deal
with NSW equations interactions between surface waves and a floating structure. In this internship
we will consider the a priori approach instead, developped later in this document.

1.4 Arbitrary Lagrangian-Eulerian description.

The Arbitrary Lagrangian Eulerian (ALE) model is a mathematical framework for modeling fluid
dynamics and other physical systems. It is a hybrid approach to fluid dynamics that combines the
Lagrangian and Eulerian approaches. The ALE method describes fluid motion with respect to a
moving or deforming grid, which is useful for modeling fluid flows in complex geometries.

The Lagrangian approach to fluid dynamics is based on the idea of tracking individual fluid
particles through space and time. The Eulerian approach, on the other hand, is based on describing
the properties of the fluid at fixed points in space and time. Both approaches have advantages and
disadvantages, and the ALE framework combines the best of both worlds.

Indeed, fluid motion is described in terms of a moving grid, which is typically defined by a set
of control points. Based on the motion of the fluid, the position of these control points is updated
at each time step. This allows the grid to move and deform along with the fluid, which is especially
useful when modeling fluid flows in complex geometries like those found in industrial applications.

The ALE method allows for the grid to move and deform with the fluid, which is particularly
useful in modeling shallow-water flows over complex geometries such as coastal regions, riverbeds,
and estuaries. It can adapt the mesh to the flow gradients, which allows for a more efficient use of
computational resources and accurate modeling of the flow behavior.
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Section 2

Mathematical framework.

This section will introduce and define many mathematical objects we will use in the following work,
especially notions related to discretization.

2.1 Discrete settings for dG method.

2.1.1 Spatial settings and basis functions.

Let Ω ∈ Rd, denote the computational domain of dimension d, with boundary ∂Ω. In our work,
we will only deal with the cases d = 1 and d = 2. We consider the following partition Th :=

{ω1, . . . ,ωnel} ⊂ Ω of open disjoint elements ω of boundary ∂ω such that

Ω =
󰁞

ω∈Th

ω.

This partition is characterized by the mesh size h := maxω∈Th
hω where hω is the diameter of element

ω. The dG methods are based on the following broken polynomial spaces, for an integer polynomial
degree k ≥ 1

Pk(Th) := {v ∈ L2(Ω) | ∀ω ∈ Th, v|ω ∈ Pk(ω)},

where Pk(ω) denotes the space of polynomials in ω of total degree at most k, with dim(Pk(ω)) = k+1.
Piecewise polynomial functions belonging to Pk(Th) will be denoted with a subscript h in the
following, and for all ω ∈ Th and vh ∈ Pk(Th), we may use the shortcut vωh := vh|ω, when no
confusion is possible.
For any mesh element ω ∈ Th, we will consider a basis for Pk(ω) denoted by

Ψω := {ψω
j }j∈[[1,k+1]],
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Chapter 2 : Mathematical framework.

while the basis for global space Pk(Th) is obtained by taking the cartesian product1 of the basis for
the local polynomial spaces, i.e.

Ψh :=
󲣻

ω∈Th

Ψω =
󰀋
{ψω

j }j∈[[1,k+1]]

󰀌
ω∈Th

.

We may also use the following shortcut notations for all ωi ∈ Th, and for smooth enough scalar-
valued functions v and w :

󰁝

Th

v(x)w(x) dx :=
󰁛

ω∈Th

󰁝

ω

v(x)w(x) dx,

[v]∂ωi
:= v(xi+ 1

2
)− v(xi− 1

2
).

For ω ∈ Th, we denote by pkω the L2-orthogonal projector onto Pk(ω) and pkTh
the global L2-

orthogonal projector onto Pk(Th) that gather all the local L2 projectors pkω on each element.

2.1.2 Time integration.

Let us also introduce a general partition of the time domain 0 = t0 < t1 < · · · < tn < · · · < tN = T ,
and the time step ∆tn = tn+1 − tn. Time integration may be carried out using explicit Strong
Stability Preserving Runge-Kutta schemes. For instance, considering the following semi-discrete
equation in operator form

∂tuh +Lh(uh) = 0,

we advance from time level n to (n+ 1) with the third-order scheme as follows :

un,1
h = un

h −∆tnLh(u
n
h),

un,2
h =

1

4
(3un

h + un,1
h )− ∆tn

4
Lh(u

n,1
h ),

un+1
h =

1

3
(un

h + 2un,2
h )− ∆tn

3
Lh(u

n,2
h ),

where un,1
h and un,2

h are the solution obtained at intermediate stages, and the initial data u0
h is

defined as the L2 projection of the initial datum. Everytime ∆t will be chosen according a CFL
condition that will vary depending on the problem we will deal with. Typically, for dG methods
with a Runge-Kutta scheme, our CFL condition could look like CFL = (2k−1)−1, k being the order
of the method.

1Note that we have also, for all ω ∈ Th and j ∈ [[1, k + 1]], supp(ψω
j ) ⊂ Ω.
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Chapter 2 : Mathematical framework.

2.2 Discontinuous Galerkin formulation for the NSW

equations.

Let us remind the Nonlinear Shallow-Water equations :

∂tv + ∂xF(v, b) = B(v, ∂xb), (2.1)

where v : R × R+ → Θ gathers the flow’s conservative variables and is assumed to take values in
the convex and open set

Θ = {(η, q) ∈ R2 | H := η − b ≥ 0}, (2.2)

where F : Θ×R → R2 is the nonlinear flux function and B : Θ×R → R2 is the topography source
term, defined as follows

v = (η, q)T , F(v, b) =

󰀕
q, uq +

g(η2 − 2ηb)

2

󰀖T

, B(v, ∂xb) = (0,−gη∂xb)
T .

Figure 2.1: Main notations for free surface flows.

Let us now multiply (2.1) by a test function ψ ∈ Pk(Th), and integrate locally on cell ωi to get
󰁝

ωi

ψ∂tv dx+

󰁝

ωi

ψ∂xF(v, b) dx =

󰁝

ωi

ψB(v, ∂xb) dx,

and since the arbitrary function ψ is not time dependant we have

d

dt

󰁝

ωi

ψv dx+

󰁝

ωi

ψ∂xF(v, b) dx =

󰁝

ωi

ψB(v, ∂xb) dx.

An integration by part will then give us

d

dt

󰁝

ωi

ψv dx−
󰁝

ωi

F(v, b)∂xψ dx+
󰀅
ψF(v, b)

󰀆i+ 1
2

i− 1
2

=

󰁝

ωi

ψB(v, ∂xb) dx.

Let us now consider the restrictions of the sought solution and the bathymetry to the mesh element
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Chapter 2 : Mathematical framework.

ωi, which writes

vωi
h =

k+1󰁛

p=1

vωi
p ψωi

p and bωi
h =

k+1󰁛

p=1

bωi
p ψωi

p .

According to those, the dG local formulation can be written, for any l ∈ [[1, k + 1]] :

d

dt

󰁝

ωi

ψωi
l vωi

h dx−
󰁝

ωi

F(vωi
h , bωi

h )∂xψ
ωi
l dx+

󰀅
ψωi
l F

󰀆i+ 1
2

i− 1
2

=

󰁝

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h ) dx,

where F is the numerical flux that needs to be consistent with the flux function F. In the context
of dG schemes, the numerical flux is defined as a function of the left and right traces of the local
polynomial approximation coming from each side of the interface, i.e.

Fi+ 1
2
= F

󰀓
vωi
h (xi+ 1

2
, t),v

ωi+1

h (xi+ 1
2
, t)

󰀔
.

Here we will use the Global Lax-Friedrichs numerical flux which reads

F(u,v) =
F(u) + F(v)

2
− σ

2
(v − u),

where σ = maxω∈Th
(|u| +

√
gH). Using the notations v±

i− 1
2

, v±
i+ 1

2

for the left and right traces of vh
in the boundaries xi− 1

2
and xi+ 1

2
of ωi, the previous formulation becomes, for any l ∈ [[1, k + 1]] :

k+1󰁛

p=1

∂tv
ωi
p

󰁝

ωi

ψωi
p ψωi

l dx−
󰁝

ωi

F(vωi
h , bωi

h )∂xψ
ωi
l dx+

󰀅
ψωi
l F

󰀆i+ 1
2

i− 1
2

=

󰁝

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h ) dx, (2.3)

and the global dG solution will be obtained by the gathering all the local solutions.

Remark 2.2.1. The local semi-discrete system (2.3) can be expressed in matrix form :

Mωi
∂tvωi

= 󰁨Lωi
,

where Mωi
is the local mass matrix, i.e.

Mωi
=

󰀃
mωi

l,p

󰀄
l∈[[1,k+1]]

=

󰀕󰁝

ωi

ψωi
l ψωi

p dx

󰀖

l∈[[1,k+1]]

,

and 󰁨Lωi
being the local residual vector gathering the volume integrals, the surface integrals and

source terms as follows :

󰁨Lωi
=

󰀃
ℓωi
l,p

󰀄
l∈[[1,k+1]]

=

󰀕󰁝

ωi

F(vωi
h , bωi

h )∂xψ
ωi
l dx−

󰀅
ψωi
l F

󰀆i+ 1
2

i− 1
2

+

󰁝

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h ) dx

󰀖

l∈[[1,k+1]]

Remark 2.2.2. Same way as previously, we can express the global semi-discrete system in matrix
form, i.e.

M∂tv = 󰁨L,
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Chapter 2 : Mathematical framework.

where M is the block-diagonal matrix defined like this

M =

󰀵

󰀹󰀹󰀹󰀹󰀷

Mω1 0 . . . 0

0 Mω2 . . . 0
...

... . . . ...
0 0 . . .Mωnel

󰀶

󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

󰀃
mω1

l,p

󰀄
l∈[[1,k+1]]

0 . . . 0

0
󰀃
mω2

l,p

󰀄
l∈[[1,k+1]]

. . . 0
...

... . . . ...
0 0 . . .

󰀃
m

ωnel
l,p

󰀄
l∈[[1,k+1]]

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
,

and

󰁨L =
󰁫
󰁨Lω1

󰁨Lω2 . . . 󰁨Lωnel

󰁬T
=

󰁫󰀃
ℓω1
l,p

󰀄
l∈[[1,k+1]]

󰀃
ℓω2
l,p

󰀄
l∈[[1,k+1]]

. . .
󰀃
ℓ
ωnel
l,p

󰀄
l∈[[1,k+1]]

󰁬T
.

2.3 Coupling with ALE description.

Here we introduce an ALE description that will be used to deal with the coupled problem for the
Ph.D. A central aspect of any ALE description is the construction of a continuous and regular
coordinate transformation, allowing to recast the equations from the initial (stationary) domain Ω0

to the current moving domain Ωt :

Ω0 × [0, Tmax] ∋ (X, t) 󰀁→ x(X, t) ∈ Ωt,

where X refers to the reference coordinate in Ω0 and x := x(X, t) the associated physical coordi-
nate in Ωt. Further assuming this mapping to be continuously differentiable with respect to time,
piecewise continuously differentiable with respect to X, and denoting by vg(x, t) the grid’s velocity
at the physical point x := x(X, t), we have the following identity :

vg(x(X, t), t) = ∂tx(X, t).

Now, for the sake of notations, considering any function v(x, t), we introduce 󰁨v(X, t) its counterpart
defined on the referential frame as

󰁨v(X, t) := v(x(X, t), t).

Then, for any arbitrary and regular enough function v(x, t), the fundamental ALE relation between
the total time derivative, the Eulerian time derivative and the spatial derivative is

d

dt
v(x(X, t), t) := ∂tv(x(X, t), t) + vg∂xv(x(X, t), t) = (∂t + vg∂x)v(x(X, t), t) =: ∂t󰁨v(X, t).
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Section 3

Finite-volume local subcell correction.

3.1 Subcell formulation on scalar conservation law.

More details about this section can be found in [4]. Some mathematicians discovered a remarkable
equivalence of general diagonal norm high-order summation-by-parts operators to a finite volume
formulation based on subcells. By using a specific set of subcell finite volume fluxes, they can
construct provably entropy stable schemes. It also shows scheme conservation at the subcell level.
This subcell finite volume formulation is notable in that it allows one to directly influence scheme
properties such as entropy stability by selecting the appropriate subcell finite volume fluxes. Now
Let us consider a subcell finite volume formulation for general dG schemes. Here we take the scalar
conservation law

∂tu(t, x) + ∂xf(u(t, x)) = 0, t ∈ [0, T ], x ∈ Ω.

u(0, x) = u0(x), x ∈ Ω.

Let ϕ ∈ C∞
c (Ω) a test function. Multiplying by ϕ and integrating the SCL over ωi gives us

󰁝

ωi

ϕ∂tu dx+

󰁝

ωi

∂xf(u)ϕ dx = 0,

and integrating by parts leads to
󰁝

ωi

ϕ∂tu dx =

󰁝

ωi

f(u)∂xϕ dx−
󰀅
f(u)ϕ

󰀆x
i+1

2
x
i− 1

2

.

Let us now divide our domain into subcells, according to (2.1), such that for any mesh element
ωi ∈ Th, we introduce a sub-partition Tωi

into k + 1 open disjoint subcells :

ωi :=
k+1󰁞

m=1

S
ωi

m =
k+1󰁞

m=1

󰁫
󰁨xωi

i− 1
2

, 󰁨xωi

i+ 1
2

󰁬

11



Chapter 3 : Finite-volume local subcell correction.

where the subcell Sωi
m :=

󰁫
󰁨xωi

i− 1
2

, 󰁨xωi

i+ 1
2

󰁬
is of size |Sωi

m | =
󰀏󰀏󰀏󰁨xωi

i+ 1
2

− 󰁨xωi

i− 1
2

󰀏󰀏󰀏, with the convention 󰁨xωi
1
2

= xi− 1
2

and 󰁨xωi

k+ 3
2

= xi+ 1
2
. When considering a sequence of neighboring element ωi−1, ωi and ωi+1, we may

use the convenient convention Sωi
0 := S

ωi−1

k+1 and Sωi
k+2 := S

ωi+1

1 .

Figure 3.1: Subcell decomposition of ωi through k + 2 flux points.

Remark 3.1.1. Let us keep in mind that these flux points can be chosen completely arbitrarily
and are not required to be related to any quadrature rule or diagonal norm matrix, as is typically
the case in entropy stable schemes. Furthermore, the choice of the dG basis functions has no effect
on these flux points. Let us reiterate that any cell subdivision would result in the same theoretical
result, namely the same dG scheme. It would only have an impact on the definition of the subcell
finite volume numerical fluxes defined in the rest of the current development. However, it has an
effect on the correction procedure, as we’ll see later.

Now, the important step here is the introduction of some very specific basis functions that we
refer from now on to as subresolution basis functions. For an ω ∈ Th, these functions can be seen
as the L2 projection onto Pk(ω) of the subcell indicator function {1ω

m | m ∈ [[1, k + 1]]} such that
1ω
m(x) = 1 if x ∈ Sω

i , and 0 otherwise. Then we have the set of subresolution basis functions
{φω

m ∈ Pk(ω) | m ∈ [[1, k + 1]]} where the basis is defined as follows

φω
m = pkω(1

ω
m), m ∈ [[1, k + 1]], (3.1)

such that for any ϕ ∈ Pk(ω), we have
󰁝

ω

φω
mϕ dx =

󰁝

ω

1ω
mϕ dx =

󰁝

Sω
i

ϕ dx.

Let us also denote that this condition enforces that for all x ∈ ωi,

k+1󰁛

m=1

φωi
m (x) = 1.

Finally, for every ω ∈ Th, we introduce the set of piecewise constant functions on the sub-grid :

P0(Th) := {v ∈ L2(ω) | ∀Sω
m ∈ Tω, v|Sω

m
∈ P0(Sω

m)}.

12



Chapter 3 : Finite-volume local subcell correction.

Here we will consider the classical time discretization and marching algorithms given in (2.1.2).
Now, in order to obtain a (k+1)th order discretization, let us consider here a piecewise polynomial
approximated solution uh(x, t), where its restriction to cell ωi, namely uh|ωi

= uωi
h , belongs to Pk(ωi).

Then the solution writes

uωi
h (x, t) =

k+1󰁛

m=1

uωi
m (t)φωi

m (t),

the coefficients uωi
m being the solution moments to be computed through a local variational formu-

lation on ωi, i.e. find uωi
h ∈ Pk(ωi) such that, for all ϕ ∈ Pk(ωi),

󰁝

ωi

ϕ∂tu
ωi
h dx =

󰁝

ωi

f(uωi
h )∂xϕ dx−

󰀅
Fϕ

󰀆x
i+1

2
x
i− 1

2

. (3.2)

where F is the dG numerical flux function1. In this context, F is defined as a function of the
two states on the left and right of each interface, i.e. Fi− 1

2
= F

󰀓
uωi
h (xi+ 1

2
, t), u

ωi+1

h (xi+ 1
2
, t)

󰀔
. This

function is generally obtained by solving an exact or approximated Riemann problem. In this section
we will only consider the classical local Lax-Friedrichs numerical flux, which reads

F(u, v) =
f(u) + f(v)

2
− γ(u, v)

2
(v − u),

where γ(u, v) = max(|f ′(u)|, |f ′(v)|).
Here in (3.2), we need to substitute in the volume integral

󰁕
ωi
f(uωi

h )∂xϕ dx the exact interior flux
function f(uωi

h ) with some polynomial approximation fωi
h . To achieve this, we define fωi

h ∈ Pα(ωi),
where α ∈ N∗, as the L2 projection of function f(uωi

h ) onto Pα(ωi) as follows
󰁝

ωi

fωi
h ψ dx =

󰁝

ωi

f(uωi
h )ψ dx, ∀ψ ∈ Pα(ωi).

We need that α ≥ k− 1, and that
󰁕
ωi
f(uωi

h )ψ dx is computed the same way2 as the volume integral
󰁕
ωi
f(uωi

h )∂xϕ dx in (3.2), to ensure that the dG schemes can rewrites as
󰁝

ωi

ϕ∂tu
ωi
h dx =

󰁝

ωi

fωi
h ∂xϕ dx−

󰀅
Fϕ

󰀆x
i+1

2
x
i− 1

2

, ∀ϕ ∈ Pk(ωi).

Therefore, through analytical integration or using quadrature, the volume integral
󰁕
ωi
fωi
h ∂xϕ dx

will be computed exactly, as fωi
h ∂xϕ dx ∈ Pα+k−1(ωi). We get then, for all ϕ ∈ Pk(ωi), the following

strong form
󰁝

ωi

ϕ∂tu
ωi
h dx =

󰁝

ωi

fωi
h ∂xϕ dx−

󰀅
Fϕ

󰀆x
i+1

2
x
i− 1

2

= −
󰁝

ωi

∂xf
ωi
h ϕ dx+

󰀅
(f i

h −F)ϕ
󰀆x

i+1
2

x
i− 1

2

. (3.3)

1In addition to ensure the scheme conservation, the numerical flux is the cornerstone of any Fv or dG scheme
regarding fundamental considerations as stability, positivity and entropy among others.

2Namely by exact integration, or by the same quadrature rule. In dG schemes, volume integrals are generally
computed by means of a quadrature rule. And for the purpose of accuracy, it is possible to demonstrate that to
design a (k+1)th order numerical scheme, a quadrature rule exact at least for polynomial up to degree 2k is required.
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Chapter 3 : Finite-volume local subcell correction.

Since the subresolution basis function are L2 projections and equation (3.3) holds for any polynomial
of degree k, Let us replace ϕ by φωi

m and get
󰁝

ωi

φωi
m∂tu

ωi
h dx = −

󰁝

ωi

∂xf
ωi
h φωi

m dx+
󰀅
(f i

h −F)φωi
m

󰀆x
i+1

2
x
i− 1

2

, m ∈ [[1, k + 1]].

Recalling that ∂tu
ωi
h , ∂xf

ωi
h ∈ Pk(ωi), we have

󰁝

ωi

φωi
m∂tu

ωi
h dx =

󰁝

S
ωi
m

∂tu
ωi
h dx and

󰁝

ωi

∂xf
ωi
h φωi

m dx =

󰁝

S
ωi
m

∂xf
ωi
h dx,

and introducing the subcell mean values uωi
m such that

uωi
m =

1

|Sωi
m |

󰁝

S
ωi
m

uωi
h dx,

we can get
󰁝

ωi

φωi
m∂tu

ωi
h dx = −

󰁝

ωi

∂xf
ωi
h φωi

m dx+
󰀅
(fωi

h −F)φωi
m

󰀆x
i+1

2
x
i− 1

2

⇔
󰁝

S
ωi
m

∂tu
ωi
h dx = −

󰁝

S
ωi
m

∂xf
ωi
h dx+

󰀅
(fωi

h −F)φωi
m

󰀆x
i+1

2
x
i− 1

2

,

and finally obtain the scheme

∂tu
ωi
m = − 1

|Sωi
m |

󰀕󰀅
fωi
h

󰀆󰁨xm+1
2

󰁨x
m− 1

2

−
󰀅
(fωi

h −F)φωi
m

󰀆x
i+1

2
x
i− 1

2

󰀖
.

The last step is to introduce the k + 2 subcell finite volume like flux
󰁱
󰁥Fωi

m+ 1
2

󰁲

m∈[[0,k+1]]
that will be

referred now as the reconstructed fluxes, located at the k+2 flux points. These reconstructed fluxes
are defined through the following linear system :

󰁥Fωi

m+ 1
2

− 󰁥Fωi

m− 1
2

=
󰀅
f i
h

󰀆󰁨xm+1
2

󰁨x
m− 1

2

−
󰀅
(f i

h −F)φωi
m

󰀆x
i+1

2
x
i− 1

2

, m ∈ [[0, k + 1]] (3.4)

󰁥Fωi
1
2

= Fi− 1
2
, 󰁥Fωi

k+ 3
2

= Fi+ 1
2
. (3.5)

Solving this is pretty straightforward, as if we substitute m by p in (3.4) and summing on p from 1
to m leads to

󰁥Fωi

m+ 1
2

= fωi
h (󰁨xωi

m+ 1
2

)−
󰀣
1−

m󰁛

p=1

φωi
p (xi− 1

2
)

󰀤󰀓
fωi
h (xi− 1

2
)−Fi− 1

2

󰀔
−

󰀣
m󰁛

p=1

φωi
p (xi+ 1

2
)

󰀤󰀓
fωi
h (xi+ 1

2
)−Fi+ 1

2

󰀔
.

We finally get the value of the reconstructed fluxes :

󰁥Fωi

m+ 1
2

= fωi
h (󰁨xωi

m+ 1
2

)− C
i− 1

2

m+ 1
2

󰀓
fωi
h (xi− 1

2
)−Fi− 1

2

󰀔
− C

i+ 1
2

m+ 1
2

󰀓
fωi
h (xi+ 1

2
)−Fi+ 1

2

󰀔
, (3.6)
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Chapter 3 : Finite-volume local subcell correction.

where the correction coefficients C
i± 1

2

m+ 1
2

are defined as

C
i− 1

2

m+ 1
2

:=
k+1󰁛

p=m+1

φωi
p (xi− 1

2
) and C

i− 1
2

m+ 1
2

:=
m󰁛

p=1

φωi
p (xi+ 1

2
).

Those reconstructed flux (3.6) are nothing but the interior polynomial flux fωi
h (󰁨xωi

m+ 1
2

) with some
corrections terms that take account of the difference between the boundary values of this interior
flux and the numerical flux.
Let us finally gather all of these in the following result :

Theorem 3.1.2. Provided the analytical calculation of volume integrals, or alternatively by means
of quadrature rule, discontinuous Galerkin schemes expressed in cell ωi as follows

󰁝

ωi

ϕ∂tu
ωi
h dx =

󰁝

ωi

f(uωi
h )∂xϕ dx−

󰀅
Fϕ

󰀆x
i+1

2
x
i− 1

2

, ∀ϕ ∈ Pk(ωi),

can be recast into k + 1 subcell finite volume schemes as, for m ∈ [[1, k + 1]]

∂tu
ωi
m = − 1

|Sωi
m |

󰀓
󰁥Fωi

m+ 1
2

− 󰁥Fωi

m− 1
2

󰀔
,

where the k + 2 reconstructed fluxes 󰁥Fωi

m+ 1
2

are defined by

󰁥Fωi

m+ 1
2

= fωi
h (󰁨xωi

m+ 1
2

)− C
i− 1

2

m+ 1
2

󰀓
fωi
h (xi− 1

2
)−Fi− 1

2

󰀔
− C

i+ 1
2

m+ 1
2

󰀓
fωi
h (xi+ 1

2
)−Fi+ 1

2

󰀔
.

In the last expression, for α ∈ [[k − 1, k + 1]], the polynomial flux fωi
h is either a L2 projection of

f(uωi
h ) onto ∈ Pα(ωi), or collocated at α + 1 given points, as it is the case for collocated and nodal

dG schemes. Simple explicit expression of the correction coefficients can be found in [4].

3.2 A posteriori approach.

To summarize, a posteriori correction is only applied locally at the subcell level where it is absolutely
needed (i.e. only non-admissible subcells are marked), while not neglecting the scheme conservation
property.

In practice, we first reformulate dG scheme as a FV-like subcell schemes provided the use of the
so-called dG reconstructed flux. Then, the correction procedure is done as follows : at each SSP-RK
time-step, we compute a high-order dG candidate solution and check its admissibility (non-negative
water-height and no spurious oscillations). If the solution is admissible, we go further in time. If
it is not the case, we go back to the previous time-step and correct locally at the subcell level the
non-admissible local numerical solution.

Actually, we divide the cell into subcells, then, if the solution at a specific subcell is detected
as bad, we substitute the dG reconstructed flux on the subcell boundaries by a robust low-order
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Chapter 3 : Finite-volume local subcell correction.

FV numerical flux. Otherwise, if the solution is detected as admissible on this subcell, we keep the
high-order dG reconstructed numerical flux.

The purpose of applying this correction procedure is to enforce the water-height positivity in
Shallow-Water case and to avoid spurious oscillations in the vicinity of solution’s singularity while
preserving as much as possible the high accuracy and the very precise subcell resolution of high-order
dG schemes, by minimizing the number of subcells in which the solution has to be recomputed. To
this end, we pay attention to keep the scheme local conservation property. Not only the solutions
are recomputed in the troubled subcells, but also in its first neighbors, so that we can have the same
numerical fluxes on both sides of subcells interfaces. Reader can refer to [4] for more informations
and applications to NSW in [2, 3].

3.3 A priori approach.

The main goal of this internship is to consider the a priori approach instead, a monolithic subcell
dG/FV convex property preserving scheme that allows us to obtain good results with only few
cells, without any need of coming back in time loop as the other approach, and lead to a simpler
implementation.

3.3.1 Introduction of blended fluxes.

Here we will still consider high-order reconstructed fluxes 󰁥Fωi

m+ 1
2

and we introduce F ∗
m+ 1

2

= F ∗(uωi
m , uωi

m+1)

first-order finite volume flux (Lax-Friedrichs for example). The idea of this approach is to assemble
those two flux together into a new blended flux 󰁨F, such that we can get the following subcell scheme

∂tu
ωi
m = − 1

|Sωi
m |

󰀓
F ∗
m+ 1

2
− F ∗

m− 1
2
+ θm+ 1

2

󰀓
󰁥Fωi

m+ 1
2

− F ∗
m+ 1

2

󰀔
− θm− 1

2

󰀓
󰁥Fωi

m− 1
2

− F ∗
m− 1

2

󰀔󰀔

= − 1

|Sωi
m |

󰀓
󰁨Fωi

m+ 1
2

− 󰁨Fωi

m− 1
2

󰀔
,

where 󰁨F is defined as

󰁨Fωi

m± 1
2

= F ∗
m± 1

2
+ θm± 1

2

󰀓
󰁥Fωi

m± 1
2

− F ∗
m± 1

2

󰀔
.

This scheme is by construction conservative at subcell level. In the following, we may use the
following shortcut for clarity

∆Fm± 1
2
:= 󰁥Fωi

m± 1
2

− F ∗
m± 1

2
,

with

F ∗
m+ 1

2
= F ∗(uωi

m , uωi
m+1) =

f(uωi
m ) + f(uωi

m+1)

2
−

γm+ 1
2

2
(uωi

m+1 − uωi
m ).
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Considering the previous scheme and using Forward-Euler3, we can get

∂tu
ωi
m = − 1

|Sωi
m |

󰀓
󰁨Fωi

m+ 1
2

− 󰁨Fωi

m− 1
2

󰀔
⇒ uωi,n+1

m = uωi,n
m − ∆t

|Sωi
m |

󰀓
󰁨Fωi

m+ 1
2

− 󰁨Fωi

m− 1
2

󰀔
.

Now the trick here is to add then substract some terms in order to rearrange our formula, i.e.

uωi,n+1
m = uωi,n

m − ∆t

|Sωi
m |

󰀓
󰁨Fωi

m+ 1
2

− 󰁨Fωi

m− 1
2

󰀔
± f(uωi,n

m )± ∆t

|Sωi
m |(γm+ 1

2
− γm− 1

2
)uωi,n

m

=

󰀕
1− ∆t

|Sωi
m |(γm+ 1

2
− γm− 1

2
)

󰀖
uωi,n
m +

∆t

|Sωi
m |γm+ 1

2

󰀳

󰁃uωi,n
m −

󰁨Fωi

m+ 1
2

− f(uωi,n
m )

γm+ 1
2

󰀴

󰁄

+
∆t

|Sωi
m |γm− 1

2

󰀳

󰁃uωi,n
m +

󰁨Fωi

m− 1
2

− f(uωi,n
m )

γm− 1
2

󰀴

󰁄 ,

where we will now using the shortcuts

󰁨u∗,−
m+ 1

2

:= uωi,n
m −

󰁨Fωi

m+ 1
2

− f(uωi,n
m )

γm+ 1
2

, 󰁨u∗,+
m− 1

2

:= uωi,n
m +

󰁨Fωi

m+ 1
2

− f(uωi,n
m )

γm+ 1
2

,

giving us the following

uωi,n+1
m =

󰀕
1− ∆t

|Sωi
m |(γm+ 1

2
− γm− 1

2
)

󰀖
uωi,n
m +

∆t

|Sωi
m |γm+ 1

2
󰁨u∗,−
m+ 1

2

+
∆t

|Sωi
m |γm− 1

2
󰁨u∗,+
m− 1

2

.

Then, under the following CFL condition :

∆t ≤ |Sωi
m |

γm+ 1
2
+ γm− 1

2

,

we have that uωi,n+1
m is a convex combination of uωi,n

m , 󰁨u∗,+
m− 1

2

and 󰁨u∗,−
m+ 1

2

.

3.3.2 Conservation of max principle.

Now we need to assure that for a certain Θ being an admissible states convex set, we have the
following assertion :

∀(i, n) ∈ [[1, nel]]× [0, T ], (uωi,n
m ∈ Θ) ⇒

󰀓
󰁨u∗,±
m± 1

2

∈ Θ
󰀔
.

3We focus on Forward-Euler (FE) time stepping, as SSP Runge-Kutta can be formulated as convex combinations
of FE.
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First, Let us remark that we can write

󰁨u∗,−
m+ 1

2

= uωi,n
m −

󰁨Fωi

m+ 1
2

− f(uωi,n
m )

γm+ 1
2

= uωi,n
m −

F ∗
m+ 1

2

− f(uωi,n
m )

γm+ 1
2

− θm+ 1
2

∆Fm+ 1
2

γm+ 1
2

=
uωi,n
m + uωi,n

m+1

2
−

f(uωi,n
m+1)− f(uωi,n

m )

2γm+ 1
2

− θm+ 1
2

∆Fm+ 1
2

γm+ 1
2

= u∗
m+ 1

2
− θm+ 1

2

∆Fm+ 1
2

γm+ 1
2

,

and

󰁨u∗,+
m− 1

2

= uωi,n
m +

󰁨Fωi

m− 1
2

− f(uωi,n
m )

γm− 1
2

= uωi,n
m +

F ∗
m− 1

2

− f(uωi,n
m )

γm− 1
2

+ θm+ 1
2

∆Fm− 1
2

γm− 1
2

=
uωi,n
m + uωi,n

m−1

2
−

f(uωi,n
m )− f(uωi,n

m−1)

2γm− 1
2

+ θm− 1
2

∆Fm− 1
2

γm− 1
2

= u∗
m− 1

2
+ θm− 1

2

∆Fm− 1
2

γm− 1
2

,

with

u∗
m+ 1

2
:=

uωi,n
m + uωi,n

m+1

2
−

f(uωi,n
m+1)− f(uωi,n

m )

2γm+ 1
2

u∗
m− 1

2
:=

uωi,n
m + uωi,n

m−1

2
−

f(uωi,n
m )− f(uωi,n

m−1)

2γm− 1
2

.

(a) 1st order situation. (b) Blended flux situation.

Figure 3.2: Modified Riemann intermediate states.

This way, since FV being robust and conserving max principles, it is obvious that the Riemann
intermediate states u∗

m+ 1
2

, u∗
m− 1

2

∈ Θ. Here, we need to assure that 󰁨u∗,+
m− 1

2

, 󰁨u∗,−
m+ 1

2

∈ [um
min, u

m
max] ⊂

[umin, umax]. Then it implies that we should have

󰁨u∗,−
m+ 1

2

∈ [um
min, u

m
max] ⊃ I(uωi,n

m , uωi,n
m+1) and 󰁨u∗,+

m+ 1
2

∈ [um+1
min , um+1

max ] ⊃ I(uωi,n
m , uωi,n

m+1).
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Let us start first with 󰁨u∗,−
m+ 1

2

.

Case 1. If 󰁨u∗,−
m+ 1

2

= u∗
m+ 1

2

−
∆F

m+1
2

γ
m+1

2

> um
max, we have

θm+ 1
2
≤ −

󰀓
um
max − u∗

m+ 1
2

󰀔
γm+ 1

2

∆Fm+ 1
2

, ∆Fm+ 1
2
< 0.

Case 2. If 󰁨u∗,−
m+ 1

2

= u∗
m+ 1

2

−
∆F

m+1
2

γ
m+1

2

< um
min, we have

θm+ 1
2
≤

󰀓
u∗
m+ 1

2

− um
min

󰀔
γm+ 1

2

∆Fm+ 1
2

, ∆Fm+ 1
2
> 0.

This way, we have that if ∆Fm+ 1
2
/∈
󰁫
−
󰀓
um
max − u∗

m+ 1
2

󰀔
γm+ 1

2
,
󰀓
u∗
m+ 1

2

− um
min

󰀔
γm+ 1

2

󰁬
, then

θm+ 1
2
≤

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

−

󰀕
um
max−u∗

m+1
2

󰀖
γ
m+1

2

∆F
m+1

2

, if ∆Fm+ 1
2
< 0,

󰀕
u∗
m+1

2

−um
min

󰀖
γ
m+1

2

∆F
m+1

2

, if ∆Fm+ 1
2
> 0.

Let us now consider 󰁨u∗,+
m+ 1

2

and repeating what we did above.

Case 1. If 󰁨u∗,+
m+ 1

2

= u∗
m+ 1

2

+
∆F

m+1
2

γ
m+1

2

> um+1
max , we have

θm+ 1
2
≤

󰀓
um+1
max − u∗

m+ 1
2

󰀔
γm+ 1

2

∆Fm+ 1
2

, ∆Fm+ 1
2
> 0.

Case 2. If 󰁨u∗,+
m+ 1

2

= u∗
m+ 1

2

+
∆F

m+1
2

γ
m+1

2

< um+1
min , we have

θm+ 1
2
≤ −

󰀓
u∗
m+ 1

2

− um+1
min

󰀔
γm+ 1

2

∆Fm+ 1
2

, ∆Fm+ 1
2
< 0.

Now we need to separate the cases for ∆Fm+ 1
2
.

Case 1. If ∆Fm+ 1
2
> 0,

– If ∆Fm+ 1
2
>

󰀓
um+1
max − u∗

m+ 1
2

󰀔
γm+ 1

2
, then

θm+ 1
2
≤

󰀓
um+1
max − u∗

m+ 1
2

󰀔
γm+ 1

2

∆Fm+ 1
2

;
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– If ∆Fm+ 1
2
>

󰀓
u∗
m+ 1

2

− um
min

󰀔
γm+ 1

2
, then

θm+ 1
2
≤

󰀓
u∗
m+ 1

2

− um
min

󰀔
γm+ 1

2

∆Fm+ 1
2

.

This implies that if ∆Fm+ 1
2
> 0, and if ∆Fm+ 1

2
> min

󰀓
u∗
m+ 1

2

− um
min, u

∗
m+ 1

2

− um
min

󰀔
γm+ 1

2
, then

θm+ 1
2
≤

min
󰀓
u∗
m+ 1

2

− um
min, u

∗
m+ 1

2

− um
min

󰀔
γm+ 1

2

∆Fm+ 1
2

,

therefore we will take

θm+ 1
2
= min

󰀣
1,

γm+ 1
2

∆Fm+ 1
2

min
󰀓
u∗
m+ 1

2
− um

min, u
∗
m+ 1

2
− um

min

󰀔󰀤
, ∆Fm+ 1

2
> 0.

Case 2. If ∆Fm+ 1
2
< 0,

– If ∆Fm+ 1
2
< −

󰀓
um
max − u∗

m+ 1
2

󰀔
γm+ 1

2
, then

θm+ 1
2
≤ −

󰀓
um
max − u∗

m+ 1
2

󰀔
γm+ 1

2

∆Fm+ 1
2

;

– If ∆Fm+ 1
2
< −

󰀓
u∗
m+ 1

2

− um+1
min

󰀔
γm+ 1

2
, then

θm+ 1
2
≤ −

󰀓
u∗
m+ 1

2

− um+1
min

󰀔
γm+ 1

2

∆Fm+ 1
2

.

Therefore we will take

θm+ 1
2
= min

󰀣
1,−

γm+ 1
2

∆Fm+ 1
2

min
󰀓
um
max − u∗

m+ 1
2
, u∗

m+ 1
2
− um+1

min

󰀔󰀤
, ∆Fm+ 1

2
< 0.

Gathering all the conditions gives us the final condition on θm+ 1
2

such that our solution conserves
max principle, i.e.

θm+ 1
2
=

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

min

󰀕
1,

γ
m+1

2

∆F
m+1

2

min
󰀓
u∗
m+ 1

2

− um
min, u

m+1
max − u∗

m+ 1
2

󰀔󰀖
, if ∆Fm+ 1

2
> 0,

1, if ∆Fm+ 1
2
= 0,

min

󰀕
1,−

γ
m+1

2

∆F
m+1

2

min
󰀓
u∗
m+ 1

2

− um
max, u

m+1
min − u∗

m+ 1
2

󰀔󰀖
, if ∆Fm+ 1

2
< 0,

In fact, θm+ 1
2

is useful to gather any convex property we want, and not only conservation of maximum
principle but also entropy, water height positivity for Shallow-Water etc...
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Chapter 3 : Finite-volume local subcell correction.

3.3.3 Numerical validations.

This section is useful to illustrate the robustness and efficiency of our method ; it is not exhaustive
though and the reader who want more details can refer to [4] and future François Vilar’s work on
a priori method.

Linear advection of a composite signal.

To test our stabilization method, let us now address the classical case of the linear advection of a
composite signal, composed by the succession of a Gaussian, rectangular, triangular and parabolic
signals.

Figure 3.3: P5-dG/FV sub-mean values on 40 cells for linear advection.

One can see that even by means of this very coarse grid, the numerical solution is extremely precise
and robust.

Buckley non-convex flux problem.

We make use of the challenging Buckley problem to illustrate some well known problems of discon-
tinuous Galerkin schemes, as entropy and aliasing issues. The Buckley equations writes as

∂tu+ ∂xF (u) = 0,

where the non-convex flux is F (u) := 4u2

4u2+(1−u)2
. Since the flux function is now a complex ra-

tional function, it is not practical to analytically integrate the volume integrals in dG schemes.
Consequently, we may use as often a quadrature rule, exact for polynomials up to 2k.
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Chapter 3 : Finite-volume local subcell correction.

Figure 3.4: P4 dG/FV sub-mean values on 40 cells for Buckley flux.

We can see here that the classical dG solution does not converge to the entropic one due to aliasing
problems : we can then see that our corrected solution prevent this phenomenon.
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Section 4

Monolithic subcell convex property preserv-
ing scheme for Shallow-Water.

The main goal of this work is to consider the stabilization method introduced previously on Shallow-
Water equations. We want to introduce these methods on these equations such that we can pursue
Ali Haidar’s PhD work. Indeed, one of the objectives will be to consider this correction on NSW
coupled with an object floating on the surface. This coupling will be carried out in particular with
an ALE method, but this time the two-dimensional case, i.e. the concrete case, will be treated. In
this work we will restrain only to the one-dimensional case without any coupling.

4.1 Subcell dG/FV formulation for Shallow-Water.

Let us introduce the L2-projections of the flux function Fh = pkTh
(F(vh, bh)) and of the source term

Bh = pkTh
(B(vh, ∂xbh)) such that for any ϕF,ϕB ∈ Pk(Th), we have

󰁝

Th

F(vh, bh)ϕF =

󰁝

Th

FhϕF,

󰁝

Th

B(vh, ∂xbh)ϕB =

󰁝

Th

BhϕB.

As usual, we will consider F as the interface numerical flux function. Here though, denoting by v−
i+ 1

2

and v+
i+ 1

2

respectively the left and right traces of vh on interfaces xi+ 1
2

and by bi+ 1
2
= b+

i+ 1
2

= b−
i+ 1

2

the trace of bh, we define our flux on xi+ 1
2

as follows :

Fi+ 1
2
:= F(v−

i+ 1
2

,v+
i+ 1

2

, bi+ 1
2
),

where we chose the global Lax-Friedrichs flux, i.e.

F(v−,v+, b) :=
F(v−) + F(v−)

2
− σ

2
(v+ − v−),
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Chapter 4 : Monolithic subcell convex property preserving scheme for Shallow-Water.

with

σ := max
m∈[[1,k+1]]

σω = max
m∈[[1,k+1]]

󰀕
max

m∈[[1,k+1]]

󰀗
|uω

m|+
󰁴

gH
ω

m

󰀘󰀖
.

From the section (2.2), we can write
󰁝

Th

∂tvhϕ−
󰁛

ω∈Th

󰁝

ω

Fh∂xϕ+
󰁛

ω∈Th

󰀅
ϕF

󰀆
∂ω

=

󰁝

Th

Bhϕ, ∀ϕ ∈ Pk(Th),

or equivalently, using an integration by parts :
󰁝

Th

∂tvhϕ+
󰁛

ω∈Th

󰁝

ω

∂xFhϕ−
󰁛

ω∈Th

󰀅
ϕ(Fh −F)

󰀆
∂ω

=

󰁝

Th

Bhϕ, ∀ϕ ∈ Pk(Th). (4.1)

Substituting φω
m = pkω(1

ω
m) defined in (3.1) into (4.1), gives us the local equations on ω ∈ Th :

󰁝

ω

∂tvωφ
ω
m = −

󰁝

ω

∂xFωφ
ω
m +

󰁝

ω

Bωφ
ω
m +

󰀅
φω
m(Fω −F)

󰀆
∂ω
, ∀m ∈ [[1, k + 1]].

Since ∂tvω, ∂xFω,Bω ∈ (Pk(ω))2 and using the property of φω
m, it follows that

∂tvω = − 1

|Sω
m|

󰀃󰀅
Fω]∂Sω

m
−

󰀅
φω
m(Fω −F)

󰀆
∂ω

󰀄
+B

ω

m, ∀m ∈ [[1, k + 1]],

where vω = (ηω, qω)
T and B

ω

m are respectively the mean values of vω and Bω on the subcell Sω
m.

Let us now introduce the k + 2 subcells interfaces fluxes
󰁱
󰁨Fω
m+ 1

2

󰁲

m∈[[0,k+1]]
such that

󰁨Fω
m+ 1

2
− 󰁨Fω

m− 1
2
=

󰀅
Fω]∂Sω

m
−

󰀅
φω
m(Fω −F)

󰀆
∂ω
, ∀m ∈ [[1, k + 1]],

such that we have

∂tvω = − 1

|Sω
m|

󰀓
󰁨Fω
m+ 1

2
− 󰁨Fω

m− 1
2

󰀔
+B

ω

m, ∀m ∈ [[1, k + 1]]. (4.2)

The formulation (4.2) can then be seen as a FV-like scheme on subcell Sω
m.

4.2 Subcell low-order corrected FV fluxes.

4.2.1 Benefits and definitions.

Let us define here the corrected first-order FV fluxes F
l/r

m± 1
2

. Such corrected flux are designed in
order to :

1. Ensure the desired robustness properties, in particular we aim at preserving the set of admis-
sible states Θ (2.2) ;

2. Obtain a global discrete formulation which is well-balanced i.e. accurately represent the
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Chapter 4 : Monolithic subcell convex property preserving scheme for Shallow-Water.

equilibrium water depth and preserve the balance between gravitational forces and pressure
gradients.

Let’s consider ωi ∈ Th and any subcell Sm ∈ Tωi
and introduce firstly the sub-mesh reconstructed

interface values for the topography :

bm+ 1
2
:= max

󰀃
bm, bm+1

󰀄
and bm− 1

2
:= max

󰀃
bm−1, bm

󰀄
,

where b = 1
|Sω

m|
󰁕
Sω
m
bih dx, and considering Sm, the additional subcell’s interfaces topography values,

i.e.

b
m,±
m := bm± 1

2
−max

󰀓
0, bm± 1

2
− ηm

󰀔
,

b
m,−
m+1 := bm+ 1

2
−max

󰀓
0, bm+ 1

2
− ηm

󰀔
,

b
m,+

m−1 := bm− 1
2
−max

󰀓
0, bm− 1

2
− ηm

󰀔
.

We also introduce subcell’s interfaces reconstructions for the water height as follows :

H
±
:= max

󰀓
0, ηm − bm± 1

2

󰀔
,

and same goes for the surface elevation and discharge, i.e.

ηm,±
m := H

±
m + b

m,±
m and q±m := H

±
m

qm
Hm

,

such that we will get a new subcell’s interface value :

vm,±
m :=

󰀃
ηm,±
m , q±m

󰀄T
.

Using these reconstructed values, we introduce some new FV first-order numerical fluxes on subcell’s
Sm left and right interfaces :

Fl
m+ 1

2
:= F

󰀓
vm,+
m ,vm,−

m+1, b
m,+

m

󰀔
+

󰀳

󰁅󰁃
0

gηm,+
m

󰀓
b
m,+

m − b󰁨x
m+1

2

󰀔

󰀴

󰁆󰁄 ,

Fr
m− 1

2
:= F

󰀓
vm,+
m−1,v

m,−
m , b

m,−
m

󰀔
+

󰀳

󰁅󰁃
0

gηm,−
m

󰀓
b
m,−
m − b󰁨x

m− 1
2

󰀔

󰀴

󰁆󰁄 ,

where b󰁨x
m± 1

2

are the interpolated polynomial values of bh at interfaces 󰁨xm± 1
2
.
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4.2.2 Preservation of water height positivity for intermediate Riemann

states.

Using Forward-Euler time integration with the following CFL condition :

∆tn =
minω∈Th

󰀃
hω

2k+1
,minSω

m
|Sω

m|
󰀄

σ
, (4.3)

we can write the formulation (4.2) with reconstructed fluxes as

vn+1
m = vn

m − ∆t

|Sω
m|

󰀓
Fl

m+ 1
2
−Fr

m− 1
2

󰀔
+∆tBm,

where we dropped the superscript ω. The same way as before, we add then subtract quantities in
order to rewrites the previous formulation as a convex combination. Indeed we get :

vn+1
m = vn

m − ∆t

|Sω
m|

󰀓
Fl

m+ 1
2
−Fr

m− 1
2

󰀔
+∆tBm ± 2∆t

|Sω
m|

σ ± ∆t

|Sω
m|

F(vn
m)

=

󰀕
1− 2∆t

|Sω
m|

σ

󰀖
vn
m +

∆t

|Sω
m|

σ

󰀣
vn
m −

Fl
m+ 1

2

− F(vn
m)

σ

󰀤
+

∆t

|Sω
m|

σ

󰀣
vn
m −

Fr
m− 1

2

− F(vn
m)

σ

󰀤
+∆tBm

=

󰀕
1− 2∆t

|Sω
m|

σ

󰀖
vn
m +

σ∆t

|Sω
m|

v∗,l
m+ 1

2

+
σ∆t

|Sω
m|

v∗,r
m− 1

2

+∆tBm,

where

v∗,l
m+ 1

2

:= vn
m −

Fl
m+ 1

2

− F(vn
m)

σ
,

v∗,r
m− 1

2

:= vn
m −

Fr
m− 1

2

− F(vn
m)

σ
.

Here, since we are interested only in conservation of water height positivity, we just need to ensure
that for all m ∈ [[1, k+1]], ηnm ≥ b

n

m. Dropping also the superscript n, we only need to verify is that
for any m ∈ [[1, k + 1]], we have

η∗,l
m+ 1

2

= ηnm −
F

(1),l

m+ 1
2

− qm

σ
≥ bm, and η∗,r

m+ 1
2

= ηnm −
F

(1),r

m+ 1
2

− qm

σ
≥ bm+1,

where the fluxes are

F
(1),l

m+ 1
2

=
q+m + q−m+1

2
− σ

2

󰀃
ηm,−
m+1 − ηm,+

m

󰀄
,

F
(1),r

m+ 1
2

=
q+m + q−m+1

2
− σ

2

󰀃
ηm+1,−
m+1 − ηm+1,+

m

󰀄
.
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Noticing that ηm,−
m+1 − ηm,+

m = H
−
m+1 − H

+

m + b
m,−
m+1 − b

m,+

m = H
−
m+1 − H

+

m, and using the notation
um := qm

Hm
, we can write

η∗,l
m+ 1

2

= ηm −
F

(1),l

m+ 1
2

− qm

σ
= Hm + bm −

F
(1),l

m+ 1
2

− qm

σ

=
1

2

󰀓
2Hm −H

+

m +H
−
m+1

󰀔
− 1

2σ

󰀃
q−m+1 + q+m − 2qm

󰀄
+ bm

=
1

2

󰀓
2Hm −H

+

m +H
−
m+1

󰀔
− 1

2σ

󰀓
H

−
m+1um +H

+

mum − 2Hmum

󰀔
+ bm.

This way, we just need to ensure that

1

2

󰀓
2Hm −H

+

m +H
−
m+1

󰀔
− 1

2σ

󰀓
H

−
m+1um +H

+

mum − 2Hmum

󰀔
≥ 0.

By construction, for any p ∈ [[1, k+1]], 0 ≤ H
±
p ≤ Hp, so we have easily 2Hm−H

+

m+H
−
m+1 ≥ 2Hm.

For the other term, let us rearrange it into

H
−
m+1um +H

+

mum − 2Hmum =
󰀓
2Hm −H

+

m

󰀔 1 + umσ
−1

2
+H

−
m+1

1− um+1σ
−1

2
,

and according to CFL (4.3) and construction of water height, we easily have :

2Hm −H
+

m ≥ Hm,
1 + umσ

−1

2
≥ 0, H

−
m+1 ≥ 0,

1− um+1σ
−1

2
≥ 0.

Gathering all the results give us that η∗,l
m+ 1

2

≥ bm, what we wanted. A similar proof goes for the

case η∗,r
m+ 1

2

≥ bm+1.

4.3 Evaluation of numerical fluxes.

4.3.1 Expression of blended fluxes.

The values
󰁱
󰁨Fω
m+ 1

2

󰁲

m∈[[0,k+1]]
are here referred as blended fluxes, the same way as previous chapter

for our a priori stabilization method. Considering a mesh element ωi = [xi− 1
2
, xi+ 1

2
] ∈ Th, and

setting the first and last blended flux to the classical dG numerical flux values at cell boundaries
such as

󰁨Fωi
1
2

:= FdG
i− 1

2
and 󰁨Fωi

k+ 3
2

:= FdG
i+ 1

2

the m interior fluxes expression are given by

󰁨Fωi

m+ 1
2

= FFV
m+ 1

2
+Θm+ 1

2

󰀓
󰁥Fωi

m+ 1
2

−FFV
m+ 1

2

󰀔
,
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where we take Θm+ 1
2
:= diag(θm+ 1

2
, θm+ 1

2
), the first-order FV flux FFV, and 󰁥F the following high-

order reconstructed flux :

󰁥Fωi

m+ 1
2

= Fωi
(󰁨xωi

m+ 1
2

)− C
i− 1

2

m+ 1
2

󰀓
Fωi

(xi− 1
2
)−Fi− 1

2

󰀔
− C

i+ 1
2

m+ 1
2

󰀓
Fωi

(xi+ 1
2
)−Fi+ 1

2

󰀔
,

where more details can be found in Chapter (3) or [2, 4].

4.3.2 Blending coefficient assuring water height positivity.

Let’s write the formulation (4.2) with blended fluxes as

vn+1
m = vn

m − ∆t

|Sω
m|

󰀓
󰁨Fm+ 1

2
− 󰁨Fm− 1

2

󰀔
+∆tBm,

where we still dropped the superscript ω. As usual, let us add then subtract quantities in order to
rewrites this as a convex combination. We then get the system :

vn+1
m =

󰀕
1− 2∆t

|Sω
m|

σ

󰀖
vn
m +

σ∆t

|Sω
m|

󰁨v∗,−
m+ 1

2

+
σ∆t

|Sω
m|

󰁨v∗,+
m+ 1

2

,

and especially the equation on η, i.e.

ηn+1
m =

󰀕
1− 2∆t

|Sω
m|

σ

󰀖
ηnm +

σ∆t

|Sω
m|

󰁨η∗,−
m+ 1

2

+
σ∆t

|Sω
m|

󰁨η∗,+
m+ 1

2

.

The same way we did in (3), we have two states 󰁨η∗,±
m+ 1

2

, that can be wrote as

󰁨η∗,−
m+ 1

2

= η∗,−
m+ 1

2

− θm+ 1
2

󰀳

󰁃
󰁥Fωi,(1)

m+ 1
2

−F
l,(1)

m+ 1
2

σ

󰀴

󰁄 ,

󰁨η∗,+
m+ 1

2

= η∗,+
m+ 1

2

+ θm+ 1
2

󰀳

󰁃
󰁥Fωi,(1)

m+ 1
2

−F
r,(1)

m+ 1
2

σ

󰀴

󰁄 ,

and noticing that for all m ∈ [[1, k + 1]], we have η∗,−
m+ 1

2

≥ bm and η∗,+
m+ 1

2

≥ bm+1, we can find a
blending coefficient θm+ 1

2
that ensures preservation of water height positivity. The calculation is

similar as (3.3.2), and we get here for the first equation on η the following :

θm+ 1
2
≤ min

󰀓
θl
m+ 1

2
, θr

m+ 1
2

󰀔
,

where

θl
m+ 1

2
≤

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

σ

󰀕
η∗,−
m+1

2

−bm

󰀖

∆F
l,(1)

m+1
2

if ∆F
l,(1)

m+ 1
2

≥ 0,

1 if ∆F
l,(1)

m+ 1
2

≤ 0,

and θr
m+ 1

2
≤

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

σ

󰀕
bm+1−η∗,+

m+1
2

󰀖

∆F
r,(1)

m+1
2

if ∆F
r,(1)

m+ 1
2

≤ 0,

1 if ∆F
r,(1)

m+ 1
2

≥ 0,

with the notation ∆F
l/r,(1)

m+ 1
2

:= 󰁥Fωi,(1)

m+ 1
2

−F
l/r,(1)

m+ 1
2

.
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Section 5

Conclusion and perspectives.

Main results.

Beginning the internship period, we first successfully developed a C++ code for solving scalar con-
servation laws using discontinuous Galerkin methods. This code served as a foundation for our
subsequent research, enabling us to explore numerical techniques for efficiently solving conserva-
tion laws. Then, we derived Shallow-Water equations from the incompressible Euler equations,
establishing a connection between these two fundamental mathematical models. Then by studying
the Finite Volume Subcell correction, particularly focusing on Ali Haidar’s work on applying these
methods to Shallow-Water equations, we gained valuable insights into the a posteriori and a priori
approaches for tackling complex fluid dynamics problems. Especially, for the a priori method, which
was the main subject of our work, we proved some inequalities on blending coefficient, allowing us
to preserve convex properties such as conservation of maximum principle for SCL or preservation
of water-height positivity for SW.

Continuation and implementation.

Building upon the knowledge acquired during the internship, our research extended beyond the
initial scope. We embarked on implementing the a priori approach within two different software
frameworks: our homemade C++ code and Wavebox, an industrial code developed by Fabien Marche.
By integrating the a priori approach into these codes, we aim to enhance their capabilities in solving
fluid dynamics problems more accurately and efficiently. This implementation phase will allow us
to evaluate the performance and effectiveness of the a priori approach in practical scenarios.

Ph.D. objectives.

During the forthcoming Ph.D. program, our focus will be on extending our current research to
address the challenges posed by the coupling of equations involving a floating object in two di-
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mensions. Building upon the foundational work carried out during the internship, which primarily
focused on one-dimensional problems, we aim to construct a comprehensive theoretical model that
incorporates the dynamics of a floating object within the context of fluid dynamics.
One of the primary objectives of our future research will be the development and implementation
of an a priori correction method tailored specifically to this problem. By adapting the existing
correction technique, which was successfully applied in the one-dimensional case, we will refine it to
accurately capture the intricacies of the fluid-structure interaction phenomena in a two-dimensional
setting. This refined correction method will enable us to effectively handle the coupling between
the fluid and the floating object.
To facilitate the numerical simulations and enhance the accuracy of our results, we will employ
the Arbitrary Lagrangian Eulerian (ALE) description. By utilizing ALE, we can account for the
movement and deformation of the computational mesh, allowing for more precise representation
of the fluid-structure interaction. The ALE framework will serve as a crucial tool in handling the
complex coupling dynamics between the fluid and the floating object.

Applications.

The upcoming research on the coupling of equations with a floating object in two dimensions has
significant implications for renewable energy, specifically in the field of wave energy conversion.
By utilizing theoretical and numerical findings, we can especially contribute to modeling and op-
timizing wave energy converters. The untapped potential of wave energy as a clean and abundant
resource can be harnessed more effectively, leading to efficient and environmentally friendly wave
energy conversion technologies. By providing insights into fluid-structure interactions, we guide the
optimization of such devices, improving efficiency and reducing environmental impact.
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Section A

Discontinuous Galerkin method for Conser-
vation Laws.

In this appendix we introduce Discontinous Galerkin methods (dG) : the first part of the internship
consisted in becoming familiar with these methods and writing a small code in C++. Here’s some
early work on it and a brief introduction to dG implementation.
Our aspiration is to further enhance and refine the code. By expanding its functionality and making
it more comprehensive, we aim to create a valuable resource for students seeking a simplified example
of dG schemes. This endeavor stems from my own experiences as a student, where access to such
a resource would have greatly facilitated my understanding and learning process.

A.1 Hyperbolic scalar conservation law.

We will use dG method on a typical hyperbolic PDE, the scalar conservation law

∂tu(t, x) + ∂xf(u(t, x)) = 0, t ∈ R+, x ∈ [a, b]. (A.1)

u(0, x) = u0(x), x ∈ [a, b]. (A.2)

where f is the flux function and u the solution.

A.1.1 Discretization and properties.

Let us introduce some notations and make some assumptions to deal with the problem.

– We consider the domain [a, b] covered by the following mesh composed of the cells Ii :=

[xi− 1
2
, xi+ 1

2
], for i ∈ [[1, N ]], where x0 := a and xN+ 1

2
:= b.

– We denote ∆xi = xi+ 1
2
− xi− 1

2
for i ∈ [[1, N ]], and h := maxi∈[[1,N ]] ∆xi.

– We assume the mesh is regular, namely there is a constant c > 0 independent of h such that
∆xi ≥ ch, for i ∈ [[1, N ]].
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– We define a finite element space consisting of piecewise polynomials

V k
h := {v ∈ L2([a, b]) | v|Ii ∈ Pk(Ii), i ∈ [[1, N ]]},

where Pk(Ii) denotes the set of polynomials of degree up to k defined on the cell Ii.

To get the discrete variational formulation, we multiply each side of the conservation law by a
test-function vh ∈ V k

h , then integrate on a cell :

∂tuh + ∂xf(uh) = 0 ⇔
󰁝

Ii

∂tuhvh dx+

󰁝

Ii

∂xf(uh)vh dx = 0 (A.3)

⇔
󰁝

Ii

∂tuhvh dx−
󰁝

Ii

∂xvhf(uh) dx+ 󰁥fi+ 1
2
vh(x

−
i+ 1

2

)− 󰁥fi− 1
2
vh(x

+
i− 1

2

) = 0, (A.4)

where 󰁥f is the numerical flux which is a single valued function defined at the cell interfaces and in
general depends on the values of the numerical solution from both sides of the interface

󰁥fi+ 1
2
:= 󰁥f

󰀓
uh(x

−
i+ 1

2

, t), uh(x
+
i+ 1

2

, t)
󰀔
.

From classic finite differences and finite volumes schemes, we have the monotone flux verifying
consistency, (ie. 󰁥f(u, u) = f(u)), continuity ( 󰁥f is at least Lipschitz-continuous with respect to both
of its arguments) and monoticity ( 󰁥f is a non-decreasing function of its first argument, and a non-
decreasing function of its second argument). We can give some examples of well-known monotone
fluxes such as Lax-Friedrichs ’

󰁥fLF (u−, u+) :=
f(u−) + f(u+)

2
− u− + u+

2
max

u
|f ′(u)|,

or Godunov flux defined as

󰁥fGod(u−, u+) :=

󰀻
󰀿

󰀽
minu−≤u≤u+ f(u), if u− < u+

maxu+≤u≤u− f(u), if u− ≥ u+
.

It is well known that weak solutions to (A.1) are not necessarily unique, and the unique, physically
meaningful weak solution (the so-called entropy solution) satisfies the following entropy inequality

∂tU(u) + ∂xF (u) ≤ 0, (A.5)

in distribution sense, for any convex entropy U(u) satisfying U(u) ≥ 0 and the corresponding
entropy flux

F (u) :=

󰁝 u

U ′(u)f(u) du.

It would be ideal if a numerical approximation to (A.1) has the same entropy inequality as (A.5).
A discrete entropy inequality is typically challenging to demonstrate for finite difference or finite
volume schemes, particularly for high order schemes and when the flux function f in (A.1) is not
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convex or concave. However, it turns out that it is easy to prove that the dG scheme (A.4) satisfies
a cell entropy inequality.

Proposition A.1.1. The solution uh to dG scheme (A.4) satisfies the entropy inequality

d

dt

󰁝

Ii

U(uh) dx+ 󰁥Fi+ 1
2
− 󰁥Fi− 1

2
≤ 0, (A.6)

for the entropy U(u) = u2

2
, and a consistent flux

󰁥Fi+ 1
2
= 󰁥F

󰀓
uh(x

−
i+ 1

2

, t), uh(x
+
i+ 1

2

, t)
󰀔
,

such that 󰁥F (u, u) = F (u).

Proof. We first introduce the short-hand notation

Bi(uh; vh) :=

󰁝

Ii

∂tuhvh dx−
󰁝

Ii

∂xvhf(uh) dx+ 󰁥fi+ 1
2
vh(x

−
i+ 1

2

)− 󰁥fi− 1
2
vh(x

+
i− 1

2

). (A.7)

Taking vh = uh in Bi, we get
󰁝

Ii

uh∂tuh dx−
󰁝

Ii

∂xuhf(uh) dx+ 󰁥fi+ 1
2
uh(x

−
i+ 1

2

)− 󰁥fi− 1
2
uh(x

+
i− 1

2

) = 0, (A.8)

and by denoting 󰁨F (u) =
󰁕 u

f(u) du, we have
󰁝

Ii

∂tU(uh) dx− 󰁨F
󰀓
uh(x

−
i+ 1

2

)
󰀔
+ 󰁨F

󰀓
uh(x

+
i+ 1

2

)
󰀔
+ 󰁥fi+ 1

2
uh(x

−
i+ 1

2

)− 󰁥fi− 1
2
uh(x

+
i− 1

2

) = 0, (A.9)

or we have

Bi(uh; vh) =

󰁝

Ii

∂tU(uh) dx+ 󰁥Fi+ 1
2
− 󰁥Fi− 1

2
+Θi− 1

2
,

with

󰁥Fi+ 1
2
:= − 󰁨F

󰀓
uh(x

−
i+ 1

2

)
󰀔
+ 󰁥fi+ 1

2
uh(x

−
i+ 1

2

), (A.10)

Θi− 1
2
:= − 󰁨F

󰀓
uh(x

−
i− 1

2

)
󰀔
+ 󰁨F

󰀓
uh(x

+
i− 1

2

)
󰀔
+ 󰁥fi+ 1

2
uh(x

−
i− 1

2

)− 󰁥fi− 1
2
uh(x

+
i− 1

2

). (A.11)

We can verify easily that the numerical entropy flux defined in (A.10) is consistent with the entropy
flux F (u) =

󰁕 u
U ′(u)f(u) du with U(u) = u2

2
. We can also verify that

Θi− 1
2
= − 󰁨F

󰀓
uh(x

−
i− 1

2

)
󰀔
+ 󰁥fi− 1

2
uh(x

−
i− 1

2

) + 󰁨F
󰀓
uh(x

+
i− 1

2

)
󰀔
− 󰁥fi− 1

2
uh(x

+
i− 1

2

)

= (uh(x
+
i− 1

2

)− uh(x
−
i− 1

2

))( 󰁨F ′(ξ)− 󰁥fi− 1
2
) ≥ 0,

where we applied a mean value theorem, ξ being a value between u− and u+, and using the fact
that 󰁨F ′(ξ) = f(ξ). We obtain the last inequality with the monoticity of the flux 󰁥f . This finishes
the proof. 󰃈
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We should remark that the proof is independent of the scheme’s accuracy, as it holds for the
piecewise polynomial space of any degree k. On any triangulation, an identical proof may be given
for a multidimensional dG scheme. Of course, the cell entropy inequality implies an L2 stability of
the numerical solution that we give now.

Proposition A.1.2. For periodic or compactly supported boundary conditions, the solution uh to
the semi-discrete dG scheme (A.4) satisfies the following

d

dt

󰁝 1

0

u2
h dx ≤ 0, or 󰀂uh(·, t)󰀂L2 ≤ 󰀂uh(·, 0)󰀂L2 .

Proof. We just have to sum up the cell entropy inequality (A.6) over i. The flux terms telescope
each other and there is no boundary term left because of the periodic or compact supported bound-
ary condition. The two inequalities are immediate. 󰃈

We can notice that both the cell entropy inequality and the L2 stability are valid even when the
exact solution of the conservation law is discontinuous.

A.1.2 Implementation.

Let us consider the previous spatial discretization with the time discretization with ∆t being fixed
and tn = n∆t. We consider the following semi-discrete variational formulation :

Find uh ∈ V k
h such that

󰁝

Ii

∂tuhφ dx−
󰁝

Ii

∂xφf(uh) dx+ 󰁥fi+ 1
2
φ(xi+ 1

2
)− 󰁥fi− 1

2
φ(xi− 1

2
) = 0, ∀φ ∈ V k

h .

As we said, in comparison with the classical FEM, here the basis functions (i.e. the basis of V k
h ), are

discontinuous across each element. A common choice of basis functions are either the Lagrange or the
Legendre polynomials, because of their orthogonality properties which simplify the computations.
In our case we will consider the Legendre polynomials up to degree k as our basis functions. In the
reference element [−1, 1], the Legendre polynomials are defined recursively as follows

󰀻
󰀿

󰀽
P0(x) = 1, P1(x) = x,

mPn(x) = (2m− 1)xPm−1(x)− (m− 1)Pm−2(x),

for all m ∈ N∗ \ {1}. To define them on each element, we consider the following map

ξ ∈ [−1, 1] 󰀁−→ ∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2
= x ∈ Ii. (A.12)

So the Legendre polynomials on Ii are denoted 󰁨Pj, with j ∈ [[0, k]] :

󰁨Pj(x) = 󰁨Pj

󰀕
∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2

󰀖
.
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The approximate solution uh can then be wrote as

uh|Ii =
k󰁛

j=0

uj(t) 󰁨Pj(x),

with the (uj)j∈[[0,k]] that we still want to find. Replacing uh|Ii by its expression in what’s above, and
considering the test function φ = 󰁨Pl, for all l ∈ [[0, k]], we get

󰁝

Ii

∂

∂t

󰀣
k󰁛

j=0

uj(t) 󰁨Pj(x)

󰀤
󰁨Pl(x) dx =

󰁝

Ii

f(uh) 󰁨P ′
l (x) dx+ 󰁥fi− 1

2

󰁨Pl(xi− 1
2
)− 󰁥fi+ 1

2

󰁨Pl(xi+ 1
2
)

⇔
k󰁛

j=0

u̇j(t)

󰀕󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx

󰀖
=

󰁝

Ii

f(uh) 󰁨P ′
l (x) dx+ 󰁥fi− 1

2

󰁨Pl(xi− 1
2
)− 󰁥fi+ 1

2

󰁨Pl(xi+ 1
2
).

We can obtain a fully discrete scheme by using an Euler-Explicit approximation of u̇j :

∂tu(x, tn)|Ii ≃
Un+1 − Un

∆t
.

Then we simplify the equation

k󰁛

j=0

U i,n+1
j − U i,n

j

∆t

󰀕󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx

󰀖
=

󰁝

Ii

f

󰀣
k󰁛

j=0

U i,n
j

󰁨Pj(x)

󰀤
󰁨P ′
l (x) dx+ 󰁥fn

i− 1
2

󰁨Pl(xi− 1
2
)− 󰁥fn

i+ 1
2

󰁨Pl(xi+ 1
2
)

⇔
k󰁛

j=0

U i,n+1
j

󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx =
k󰁛

j=0

U i,n
j

󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx

+∆t

󰀕󰁝

Ii

f(Un
|Ii)

󰁨P ′
l (x) dx+ 󰁥fn

i− 1
2

󰁨Pl(xi− 1
2
)− 󰁥fn

i+ 1
2

󰁨Pl(xi+ 1
2
)

󰀖
.

We finally obtain the variational formulation :

Find uh ∈ V k
h such that, for all l ∈ [[0, k]],

k󰁛

j=0

U i,n+1
j

󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx =
k󰁛

j=0

U i,n
j

󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx

+∆t

󰀕󰁝

Ii

f(Un
|Ii)

󰁨P ′
l (x) dx+ 󰁥fn

i− 1
2

󰁨Pl(xi− 1
2
)− 󰁥fn

i+ 1
2

󰁨Pl(xi+ 1
2
)

󰀖
,

where 󰁥fn
i+ 1

2

= 󰁥F
󰀓
Un
|Ii+1

, Un
|Ii

󰀔
and Un

|Ii =
󰁓k

j=0 U
i,n
j

󰁨Pj the approximation on Ii at time tn. We will
solve a linear system on each element, as FEM. Therefore for i ∈ [[1, N ]], we can write

k󰁛

j=0

U i,n+1
j

󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx =
k󰁛

j=0

U i,n
j

󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx

+∆t

󰀕󰁝

Ii

f(Un
|Ii)

󰁨P ′
l (x) dx+ 󰁥fn

i− 1
2

󰁨Pl(xi− 1
2
)− 󰁥fn

i+ 1
2

󰁨Pl(xi+ 1
2
)

󰀖
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as the scheme

GiUi,n+1 = GiUi,n +∆t
󰀓
Si,n + 󰁥fn

i− 1
2
Bi,− − 󰁥fn

i+ 1
2
Bi,+

󰀔
, (A.13)

where Gi is the mass matrix, Si,n the stiffness vector, Ui,n the vector of unknowns and Bi,± the
basis evaluations vector at time step tn.

Gi =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

󰁕
Ii
󰁨P0(x) 󰁨P0(x) dx . . .

󰁕
Ii
󰁨P0(x) 󰁨Pk(x) dx

... . . . ...
󰁕
Ii
󰁨Pk(x) 󰁨P0(x) dx . . .

󰁕
Ii
󰁨P0(x) 󰁨Pk(x) dx

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
, Ui,n =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

U i,n
1

...

U i,n
k

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
,

Si,n =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

󰁕
Ii
f(Un

|Ii)
󰁨P ′
0(x) dx

...
󰁕
Ii
f(Un

|Ii)
󰁨P ′
k(x) dx

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
, Bi,± =

󰀓
󰁨P0(xi± 1

2
), . . . , 󰁨Pk(xi± 1

2
)
󰀔T

.

In practice we don’t compute the matrix form (A.13) on an arbitrary element, we would rather
consider the matrix on the reference element [−1, 1] in order to use properties of basis functions,
and transform them on each element.

Mass matrix Gi.

Let us consider Gi on Ii. For i ∈ [[1, N ]], we have, for (j, l) ∈ [[1, k]]2, the following :

(Gi)j,l =

󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx =
∆x

2

󰁝 1

−1

󰁨Pj

󰀕
∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2

󰀖
󰁨Pl

󰀕
∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2

󰀖
dξ.

We can remark that (A.12) shifts the domain of 󰁨Pj on the right or the left, though the values doesn’t
change, meaning that we can write

󰁨Pj(x) = 󰁨Pj

󰀕
∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2

󰀖
= Pj(ξ).

By the orthogonality properties of Legendre polynomials, for all (j, l) ∈ [[1, k]]2 we have

(Gi)j,l =
∆x

2

󰁝 1

−1

󰁨Pj

󰀕
∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2

󰀖
󰁨Pl

󰀕
∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2

󰀖
dξ

=
∆x

2

󰁝 1

−1

Pj(ξ)Pl(ξ) dξ =
∆x

2

2δjl
2j + 1

,
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where the Kronecker symbol δjl = 2
2j+1

if j = l, and is null otherwise. Thus, the mass matrix
becomes diagonal and can be wrote as

Gi =
∆x

2
diag

󰀕
2

2j + 1

󰀖

j∈[[1,k]]
=

∆x

2
diag

󰀕
2,

2

3
, . . . ,

2

2k + 1

󰀖
.

Let us note that for an uniform mesh, the mass matrix is the same for any elements and any time
step. Also, we can calculate the coefficients of Gi even if the basis functions aren’t orthogonal (using
classical quadratures).

Stiffness vector Si,n.

Let us do similarly for Si,n. For l ∈ [[1, k]], we have

(Si,n)l =

󰁝

Ii

f(Un
|Ii)

󰁨P ′
0(x) dx =

∆x

2

󰁝 1

−1

f(Un
|Ii)

󰁨P ′
l

󰀕
∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2

󰀖
2dξ

∆x

=

󰁝 1

−1

f

󰀣
k󰁛

j=0

U i,n
j Pj(ξ)

󰀤
󰁨P ′
l (ξ) dξ

=

󰁝 1

−1

f
󰀓
Un|ξIi

󰀔
󰁨P ′
l (ξ) dξ,

where Un|ξIi =
󰁓k

j=0 U
i,n
j Pj(ξ) = Un

|Ii . Here we will use Gauss-Legendre quadrature, obtaining

(Si,n)l =

󰁝 1

−1

f
󰀓
Un|ξIi

󰀔
󰁨P ′
l (ξ) dξ ≃

k+1󰁛

q=1

wqf
󰀓
Un|ξqIi

󰀔
P ′
l (ξq),

and obviously the stiffness vector will not be the same depending on the element or the time step,
unlike the mass matrix.

Basis evaluations vector Bi,±.

Finally, it’s easy to see that

Bi,± =
󰀓
󰁨P0(xi± 1

2
), . . . , 󰁨Pk(xi± 1

2
)
󰀔
= (P0(±1), . . . , Pk(±1)) ,

and using the properties of the basis functions, we get

Bi,+ =
󰀃
1, . . . , 1), Bi,− =

󰀃
1,−1, . . . , (−1)k−1, (−1)k).
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Explicit matrix form.

Using again the mapping (A.12), we can write

uh|Ii =
k󰁛

j=0

U i,n
j

󰁨Pj(x) =
k󰁛

j=0

U i,n
j

󰁨Pj

󰀕
∆x

2
ξ +

xi+ 1
2
+ xi− 1

2

2

󰀖
=

k󰁛

j=0

U i,n
j Pj(ξ), n ∈ N, x ∈ Ii, ξ ∈ [−1, 1].

Finally, we have

GiUi,n+1 = GiUi,n +∆t
󰀓
Si,n + 󰁥fn

i− 1
2
Bi,− − 󰁥fn

i+ 1
2
Bi,+

󰀔

⇔ ∆x

2
diag

󰀕
2,

2

3
, . . . ,

2

2k + 1

󰀖

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

U i,n
1

...

U i,n
k

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
+∆t

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

󰁓k+1
q=1 wqf

󰀓
Un|ξqIi

󰀔
P ′
0(ξq)

...
󰁓k+1

q=1 wqf
󰀓
Un|ξqIi

󰀔
P ′
k(ξq)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
+ 󰁥fn

i− 1
2
Bi,− − 󰁥fn

i+ 1
2
Bi,+

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

=
∆x

2
diag

󰀕
2,

2

3
, . . . ,

2

2k + 1

󰀖

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

U i,n+1
1

...

U i,n+1
k

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
.

A.1.3 Numerical validations.

To test our approach, we then considered two very simple test cases with the application code we
wrote. First one was u0(x) := sin(2πx).
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Second one was the characteristic function 1[0.4,0.6].
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A.2 Systems of hyperbolic conservation laws.

The discontinuous Galerkin method is easily extendable to the case of systems. The key idea
behind this generalisation is to apply the method component-by-component and select numerical
fluxes that include all unknown variables. To help with the presentation, we describe the method
for a quasilinear system composed of two scalar hyperbolic conservation laws in this section.

Let us consider the following system
󰀻
󰀿

󰀽
∂tu(t, x) + ∂xf(v(t, x)) = 0, t ∈ R+, x ∈ [a, b].

∂tv(t, x) + ∂xg(u(t, x)) = 0, t ∈ R+, x ∈ [a, b].
(A.14)

We use the same settings as the previous section, meaning : we keep the domain [a, b] covered
by the following mesh composed of the cells Ii := [xi− 1

2
, xi+ 1

2
], for i ∈ [[1, N ]], where x0 := a and

xN+ 1
2
:= b. We still denote ∆xi = xi+ 1

2
− xi− 1

2
for i ∈ [[1, N ]], and h := maxi∈[[1,N ]] ∆xi. The mesh is

still assumed to be regular. We also still consider the following space

V k
h := {v ∈ L2(R) | v|Ii ∈ Pk(Ii), i ∈ [[1, N ]]},

where uh ∈ V k
h (resp. vh ∈ V k

h ) will be the approximation of u (resp. v).
Then, the same way as earlier, we obtain the semi-discrete scheme for both equations, considering

a test function φ ∈ V k
h and using (A.14). We finally get

Find (uh, vh) ∈ (V k
h )

2 such that, for all φ ∈ V k
h ,

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

󰁝

Ii

∂tuhφ dx−
󰁝

Ii

∂xφf(vh) dx+ 󰁥fi+ 1
2
φ(xi+ 1

2
)− 󰁥fi− 1

2
φ(xi− 1

2
) = 0,

󰁝

Ii

∂tvhφ dx−
󰁝

Ii

∂xφg(uh) dx+ 󰁥gi+ 1
2
φ(xi+ 1

2
)− 󰁥gi− 1

2
φ(xi− 1

2
) = 0,

where 󰁥fi+ 1
2
= F

󰀓
u+
i+ 1

2

, u−
i+ 1

2

, v+
i+ 1

2

, v−
i+ 1

2

󰀔
and 󰁥gi+ 1

2
= G

󰀓
u+
i+ 1

2

, u−
i+ 1

2

, v+
i+ 1

2

, v−
i+ 1

2

󰀔
are the numerical

fluxes. To obtain the scheme’s conservation property, the numerical fluxes F and G must meet
the qualities referred to on the numerical flux in the scalar case, namely consistency, Lipschitz
continuity, and monotonicity.
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Remark A.2.1. A numerical flux used for the scalar case can be generalised to the case of systems.
In order to obtain the generalised form of the flux, it is reasonable to rewrite the system (A.14) in
a compact form, i.e.

Ut + A(U)Ux = 0,

where U : R× R+ → R2 = (u, v)T and A ∈ M2×2(R) is a matrix depending on U :

A =

󰀳

󰁅󰁃
0 f ′(v)

g′(u) 0

󰀴

󰁆󰁄 .

Let us now suppose that the numerical flux 󰁥fi+ 1
2

in scalar case is 󰁥fi+ 1
2
= 󰁥f(u−, u+), where

u+ = uh(x
+
i+ 1

2

, t) and u− = uh(x
−
i+ 1

2

, t) are the values of the approximate solution on the left and
right element respectively where x+

i+ 1
2

is located. Then, the generalised form of the numerical flux
is

󰁥fi+ 1
2
= F (u+, u−, v+, v−).

Following the procedure of the scalar case, we define similarly the basis functions, meaning we
consider the Legendre polynomials up to degree k as the basis functions. We can then write the
numerical solutions as

uh|Ii =
k󰁛

j=0

uj(t) 󰁨Pj(x), vh|Ii =
k󰁛

m=0

um(t) 󰁨Pm(x).

Hence, for (j,m, l) ∈ [[0, k]]3, we obtain
󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

󰁝

Ii

∂

∂t

󰀣
k󰁛

j=0

uj(t) 󰁨Pj(x)

󰀤
󰁨Pl(x) dx =

󰁝

Ii

f(vh) 󰁨P ′
l (x) dx+ 󰁥fi− 1

2

󰁨Pl(xi− 1
2
)− 󰁥fi+ 1

2

󰁨Pl(xi+ 1
2
),

󰁝

Ii

∂

∂t

󰀣
k󰁛

m=0

um(t) 󰁨Pm(x)

󰀤
󰁨Pl(x) dx =

󰁝

Ii

g(uh) 󰁨P ′
l (x) dx+ 󰁥gi− 1

2

󰁨Pl(xi− 1
2
)− 󰁥gi+ 1

2

󰁨Pl(xi+ 1
2
).

⇔

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

k󰁛

j=0

u̇j(t)

󰀕󰁝

Ii

󰁨Pj(x) 󰁨Pl(x) dx

󰀖
=

󰁝

Ii

f(vh) 󰁨P ′
l (x) dx+ 󰁥fi− 1

2

󰁨Pl(xi− 1
2
)− 󰁥fi+ 1

2

󰁨Pl(xi+ 1
2
),

k󰁛

j=0

u̇j(t)

󰀕󰁝

Ii

󰁨Pm(x) 󰁨Pl(x) dx

󰀖
=

󰁝

Ii

g(uh) 󰁨P ′
l (x) dx+ 󰁥gi− 1

2

󰁨Pl(xi− 1
2
)− 󰁥gi+ 1

2

󰁨Pl(xi+ 1
2
).

For an approximation of the time derivative, we use again the Forward Euler method. It follows
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that we have
󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

k󰁛

j=0

U i,n+1
j − U i,n

j

∆t

󰀕󰁝

Ii

󰁨Pj
󰁨Pl dx

󰀖
=

󰁝

Ii

g

󰀣
k󰁛

m=0

V i,n
m

󰁨Pm

󰀤
󰁨P ′
l dx+ 󰁥fn

i− 1
2

󰁨Pl(xi− 1
2
)− 󰁥fn

i+ 1
2

󰁨Pl(xi+ 1
2
),

k󰁛

j=0

V i,n+1
m − V i,n

m

∆t

󰀕󰁝

Ii

󰁨Pm
󰁨Pl dx

󰀖
=

󰁝

Ii

f

󰀣
k󰁛

j=0

U i,n
j

󰁨Pj

󰀤
󰁨P ′
l dx+ 󰁥gn

i− 1
2

󰁨Pl(xi− 1
2
)− 󰁥gn

i+ 1
2

󰁨Pl(xi+ 1
2
).

⇔

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

k󰁛

j=0

U i,n+1
j

󰁝

Ii

󰁨Pj
󰁨Pl dx =

k󰁛

j=0

U i,n
j

󰁝

Ii

󰁨Pj
󰁨Pl dx+∆t

󰀕󰁝

Ii

f(V n
|Ii)

󰁨P ′
l dx+ 󰁥fn

i− 1
2

󰁨Pl(xi− 1
2
)− 󰁥fn

i+ 1
2

󰁨Pl(xi+ 1
2
)

󰀖
,

k󰁛

j=0

V i,n+1
m

󰁝

Ii

󰁨Pm
󰁨Pl dx =

k󰁛

j=0

V i,n
m

󰁝

Ii

󰁨Pm
󰁨Pl dx+∆t

󰀕󰁝

Ii

g(Un
|Ii)

󰁨P ′
l dx+ 󰁥gn

i− 1
2

󰁨Pl(xi− 1
2
)− 󰁥gn

i+ 1
2

󰁨Pl(xi+ 1
2
)

󰀖
,

where Un
|Ii =

󰁓k
j=0 U

i,n
j

󰁨Pj and V n
|Ii =

󰁓k
m=0 U

i,n
m

󰁨Pm are the approximations of u and v respectively,
in Ii at time tn. Thus, the final linear system can be written in a matrix form such as

󰀻
󰀿

󰀽
GiUi,n+1

j = GiUi,n
j +∆t

󰀓
(Sv)

i,n + 󰁥fn
i− 1

2

Bi,− − 󰁥fn
i+ 1

2

Bi,+
󰀔
,

GiVi,n+1
m = GiVi,n

m +∆t
󰀓
(Su)

i,n + 󰁥gn
i− 1

2

Bi,− − 󰁥gn
i+ 1

2

Bi,+
󰀔
,

(A.15)

for every element Ii, i ∈ [[1, N ]]. Following the simplifications and the remarks made on previous
section, the system (A.15) can easily be computed.
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Section B

Derivation of Shallow-Water Equations.

Shallow-Water Equations (SWEs) are a set of mathematical equations used to describe water move-
ment in a shallow region, which is typically defined as a region where the water depth is much
smaller than the horizontal scale of the flow. These equations are derived from the more general
fluid mechanics equations known as the Euler Equations. Let us consider the flow variable

V := V(x, y, z, t) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

U(x, y, z, t)

V (x, y, z, t)

W (x, y, z, t)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
.

In this context, let us recall that the incompressibility condition is written as

div(V) = ∂xU(x, y, z, t) + ∂yV (x, y, z, t) + ∂zW (x, y, z, t) = 0,

and the speed evolution is given as

∂tV + div(V ⊗V) = g − ρ−1∇p,

where g = (0, 0,−g)T , with g the gravity condition. We can re-write the previous system as
󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂tU + ∂xU
2 + ∂y(UV ) + ∂z(UW ) = −ρ−1∂xp,

∂tV + ∂x(UV ) + ∂yV
2 + ∂z(VW ) = −ρ−1∂yp,

∂tW + ∂x(UW ) + ∂y(V xW ) + ∂zW
2 = − (g + ρ−1∂zp) .

In practice, the numerical resolution of these equations is prohibitively expensive. On the one
hand, it is a system with three unknowns, functions of the three spatial and temporal dimensions.
Furthermore, because the system only describes the evolution of the velocity field in the fluid, we
lack direct information on the domain of calculation, which can change over time according to the
deformations of the free surface, and thus adds to the problem’s unknowns1.

1Many works have been done over several decades to return to equations that are easier to study and process
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A traditional approach entails integrating these equations on the profunder in order to reduce
the dimension of the problem by removing the vertical variable. This technique must be used in
conjunction with appropriate boundary conditions and certain assumptions that simplify the flow
regimes under consideration. That’s why we use SWEs to describe flows of relatively shallow depth,
as they provide a simplified representation of fluid motion in Shallow-Water environments, making
them a useful tool for a wide range of applications, including oceanography, hydraulic engineering,
and meteorology. They are particularly useful for simulating phenomena such as tidal waves, storm
surges, and tsunamis, which play a critical role in coastal management and disaster response.

B.1 Boundary conditions.

We first need to precise the boundary conditions who will intervene in the derivation of those
equations. For the rest of this section, Let us consider Z(x, y, t) the total elevation of the water
surface and h(x, y, t) the water height. We will deal a topography term b : (x, y) ∈ R2 󰀁→ b(x, y),
supposed to be C1 so we can have Z = h+ b.

Figure B.1: Representation of flow parameters (from [1]).

We will also note U := U(x, y, z, t) =

󰀳

󰁅󰁃
U(x, y, z, t)

V (x, y, z, t).

󰀴

󰁆󰁄 the horizontal speed vector.

B.1.1 Non-penetration condition.

This is to express that the fluid cannot cross the bottom surface. As a result, the speed of a particle
at the bottom is null in the direction perpendicular to the surface. Let us consider Mb a point of
coordinates (x0, y0, b(x0, y0)) belonging to this surface. For any particule’s trajectory on the surface

digitally.
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of the bottom, given by the map

φ : ζ 󰀁−→ (x(ζ), y(ζ), b(x(ζ), y(ζ))T ,

such that φ(0) = Mb, we can verify that n =
󰀃
−∂xb(x0, y0),−∂yb(x0, y0), 1)

T satisfy n · φ′(0) = 0,
meaning that n is a normal vector at Mb. The condition V · n = 0 at point Mb is then

Wb = Ub ·∇b, with Wb := W (x0, y0, b(x0, y0), t)) and Ub := U(x0, y0, b(x0, y0), t)).

B.1.2 Kinematic condition on the free surface.

This condition expresses the fact that a particle on the free surface does not move freely. Consider
the path of a particle

φ : t 󰀁−→ (x(t), y(t), z(t))T = (x(t), y(t), Z(x(t), y(t), t))T .

We have the horizontal speed of the particle being UZ = (ẋ(t), ẏ(t))T . We can then deduce from
parametrization of z(t) the expression of vertical component of speed Wz = ż(t) on the surface

Wz = ∂tZ +UZ ·∇Z.

B.2 Nondimensionalization of equations.

We are interested in regimes of shallow relative depth, regimes in which the wavelength λ is large
in comparison to the characteristic depth h0, or regimes in which the parameter µ = h0λ

−1 is very
small. As a result, the Shallow-Water model, which is based on this approximation, provides a good
representation of the mechanisms near the coast2. These equations, however, can also be used to

Figure B.2: Wavelengths and characteristic depth (from [1]).

study large-scale oceanographic phenomena, such as tsunamis. In practice, the latter propagate over
a few kilometres of depth, whereas the wavelengths involved can reach several hundred kilometers.
These propagations are characterized by a small variation of the flow quantities according to the
vertical coordinate, which will result in some scaling assumptions in problem scaling, as we will see.

2λ is in the order of ten meters long and h0 is in the order of a meter.
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Let us introduce the following quantities :

µ =
h0

L
; 󰁨x =

x

L
; 󰁨y =

y

L
; 󰁨z =

z

h0

; 󰁨t = µt

󰁵
g

h0

;

󰁨U =
U√
gh0

; 󰁨V =
V√
gh0

; 󰁩W =
W

µ
√
gh0

; 󰁨p =
p

ρgh0

.

It is worth noting that the previously mentioned scale factors on the variable vertical z (nondi-
mensioned by h0 = µL) and the vertical component of the velocity w (nondimensioned by µ

√
gh0)

can be found here. Let us recall that the parameter is assumed to be small : in the following section,
we will neglect the terms of order µ2. We can verify easily that the incompressibility condition on
the adimensioned variables is written

div(󰁨V) = 0,

and that the previous system give us
󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂󰁨t
󰁨U + ∂󰁨x 󰁨U2 + ∂󰁨y 󰁨U 󰁨V + ∂󰁨z 󰁨U󰁩W = −∂󰁨x󰁨p,

∂󰁨t
󰁨U + ∂󰁨x 󰁨U 󰁨V + ∂󰁨y 󰁨V 2 + ∂󰁨z 󰁨V󰁩W = −∂󰁨y󰁨p,

µ2
󰀓
∂󰁨t
󰁩W + ∂󰁨x 󰁨U󰁩W + ∂󰁨y 󰁨V󰁩W + ∂󰁨z󰁩W 2

󰀔
= −(1 + ∂󰁨z󰁨p).

In the following we will ommit the « tilde » symbol because the nondimensionalized boundary
conditions are the same as the original ones.

B.3 Mass equation.

First Let us recall a fundamental proposition.

Proposition B.3.1 (Leibniz formula). For any function f ∈ C0, and for any u,v differentiable,
we have the following3 :

d

dx

󰁝 v(x)

u(x)

f(x, t) dt =

󰁝 v(x)

u(x)

∂xf(x, t) dt+ v′(x)f(v(x))− u′(x)f(u(x)).

Let us now integrate the incompressibility condition on the depth [b, Z]. We get
󰁝 Z

b

div(V) dz =

󰁝 Z

b

div(U) dz +

󰁝 Z

b

∂zW dz = div

󰀕󰁝 Z

b

U dz

󰀖
−UZ ·∇Z +Ub ·∇b+WZ −Wb,

3Note that this formula can be generalized for superior dimensions.
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with surface speed (UZ ,WZ) and bottom speed (Ub,Wb). For the rest of the section, we will use
the shortcut

u =

󰀳

󰁅󰁃
u

v

󰀴

󰁆󰁄 =

󰁝
−

Z

b

U dz =
1

h

󰁝 Z

b

U dz.

for the mean value of U on the vertical axis.
By using the conditions Wz = ∂tZ +UZ ·∇Z and Wb = Ub ·∇b, and remarking that since b is

independant of time, such that ∂tZ = ∂t(h+ b) = ∂th, we get the following called mass equation

∂th+ div(hu) = 0.

B.4 Momentum equation.

Let us now integrate over the depth the system obtained earlier. We get
󰁝 Z

b

∂tU dz +

󰁝 Z

b

∂xU
2 dz +

󰁝 Z

b

∂y(UV ) dz +

󰁝 Z

b

∂z(UW ) dz +

󰁝 Z

b

∂xp dz = 0.

Then we consider each term and obtain
󰁝 Z

b

∂tU dz =
∂

∂t

󰀕󰁝 Z

b

U dz

󰀖
− UZ∂tZ = ∂t(hu)− UZ∂tZ,

󰁝 Z

b

∂xU
2 dz =

∂

∂x

󰀕󰁝 Z

b

U2 dz

󰀖
− U2

Z∂xZ + U2
b ∂xb,

󰁝 Z

b

∂y(UV ) dz =
∂

∂y

󰀕󰁝 Z

b

UV dz

󰀖
− UZVZ∂yZ + UbVb∂yb,

󰁝 Z

b

∂z(UW ) dz = WZUZ −WbUb = UZ∂tZ + UZ(UZ ·∇Z)− Ub(Ub ·∇b).
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Considering those calculations, we get
󰁝 Z

b

∂tU dz +

󰁝 Z

b

∂xU
2 dz +

󰁝 Z

b

∂y(UV ) dz +

󰁝 Z

b

∂z(UW ) dz +

󰁝 Z

b

∂xp dz

= ∂t(hu)− UZ∂tZ +
∂

∂x

󰀕󰁝 Z

b

U2 dz

󰀖
− U2

Z∂xZ + U2
b ∂xb+

∂

∂y

󰀕󰁝 Z

b

U2 dz

󰀖

− UZVZ∂yZ + UbVb∂yb+ UZ∂tZ + UZ(UZ ·∇Z)− Ub(Ub ·∇b) +

󰁝 Z

b

∂xp dz

= ∂t(hu)− UZ∂tZ +
∂

∂x

󰀕󰁝 Z

b

U2 dz

󰀖
+

∂

∂y

󰀕󰁝 Z

b

UV dz

󰀖
− UZ∂tZ

− UZ(UZ ·∇Z) + Ub(Ub ·∇b) + UZ∂tZ + UZ(UZ ·∇Z)− Ub(Ub ·∇b) +

󰁝 Z

b

∂xp dz

= ∂t(hu) +
∂

∂x

󰀕󰁝 Z

b

U2 dz

󰀖
+

∂

∂y

󰀕󰁝 Z

b

UV dz

󰀖
+

󰁝 Z

b

∂xp dz.

Therefore the equation can be written as

∂t(hu) +
∂

∂x

󰀕󰁝 Z

b

U2 dz

󰀖
+

∂

∂y

󰀕󰁝 Z

b

UV dz

󰀖
+

󰁝 Z

b

∂xp dz = 0.

It then remains to deal with the advective terms and the pressure terms.

B.4.1 Advective terms.

In the literature, we sometimes simply consider a constant speed along the vertical4, so that u = U.
We’ll be more general here, assuming that the flow is weakly sheared. In other words, we allow
a speed deviation along the vertical axis that is weak enough to be ignored in the considered
asymptotic regime :

U(x, y, z, t) = u(x, y, t) + µu′(x, y, z, t).

Using the definition of u, we get
󰁕 Z

b
u′ dz = 0, and therefore

󰁝 Z

b

U2 dz =

󰁝 Z

b

(u+ µu′)2 dz =

󰁝 Z

b

u2 dz + µ2

󰁝 Z

b

(u′)2 dz + 2µu

󰁝 Z

b

u′ dz = hu2 +O(µ2),

󰁝 Z

b

UV dz =

󰁝 Z

b

(u+ µu′)(v + µv′) dz = huv +O(µ2).

We can of course neglect residual terms contained in O(µ2), as we’ve stated in the introduction of
B.2.

4This hypothesis may appear harsh, but in reality, it expresses the fact that it is possible to ignore speed variations
on the vertical axis.

47



Chapter B : Derivation of Shallow-Water Equations.

Figure B.3: Decomposition of U in mean speed u and horizontal deviation speed u′ (from [1]).

B.4.2 Pressure terms and final formulation.

We recall the last equation from the previous system :

µ2
󰀃
∂tW + ∂xUW + ∂yVW + ∂zW

2
󰀄
= −(1 + ∂zp).

It gives us, by integrating, the following equation5

∂zp = −1 +O(µ2) ⇒ p(Z)− p(z) = z − Z +O(µ2)

Assuming the atmospheric pressure is null at the surface (i.e. p(Z) = 0), we have immediately that
p(b) = h+O(µ2), and we get

󰁝 Z

b

p(z) dz =
h2

2
+O(µ2).

Then we can write
󰁝 Z

b

∂xp(z) dz =
∂

∂x

󰀕󰁝 Z

b

p(z) dz

󰀖
− p(Z)∂xZ + p(b)∂xb =

∂

∂x

󰀕
h2

2

󰀖
+ h∂xb+O(µ2).

Considering the previous work on advective terms and what’s above, we get the two momentum
equations here :

∂t(hu) +
∂

∂x

󰀕
hu2 +

h2

2

󰀖
+ ∂y(huv) = −h∂xb,

∂t(hv) + ∂x(huv) +
∂

∂y

󰀕
huv +

h2

2

󰀖
= −h∂yb.

5In fact, by coming back to dimensioned variables, still neglecting terms from O(µ2), this equation becomes

∂zp = −ρg.

This is called the hydrostatic pressure hypothesis,assuming a linear pressure distribution along the vertical. It reflects
the fact that the pressure at a point (x, y) depends only on the weight of the water column above this point.
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The final system is then

∂th+ div(hu) = 0,

∂t(hu) +
∂

∂x

󰀕
hu2 +

h2

2

󰀖
+ ∂y(huv) = −h∂xb,

∂t(hv) + ∂x(huv) +
∂

∂y

󰀕
huv +

h2

2

󰀖
= −h∂yb,

and can be condensed, in dimensionalized version, as the following form :

∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u) +∇
󰀕
gh2

2

󰀖
= −gh∇b.

This is the Shallow-Water system.
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