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Subject

Finite-Volume subcell correction
for discontinuous Galerkin schemes.

Applications to Shallow-Water equations.

Goals.

Studying high-order discontinuous Galerkin schemes;

Stabilizing numerical schemes using an a priori correction;

Theoretical study of Shallow-Water equations.
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Outline of the presentation

1 Shallow-Water equations
Benefits of the model
Mathematical formulation

2 High-order discontinuous Galerkin schemes
Overview and advantages
Limits for hyperbolic and non-linear equations

3 Finite-Volume subcell correction
Reformulating dG as FV-like
A posteriori & a priori approaches

4 Stabilization of Shallow-Water equations
Subcell formulation and water-height positivity
Internship continuation and Ph.D. goals
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I. Shallow-Water equations
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Shallow-Water equations

Benefits of Shallow-Water model

(a) Grau du Roi’s coastline. (b) Shallow-Water notations.

Used mainly in oceanography, hydrology and fluid mechanics;

Derived from more complex Navier-Stokes equations;

Allow efficient big-scale simulations in real time.
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Shallow-Water equations

Pre-balanced formulation

First-order hyperbolic system with source term :

∂tvvv + ∂xFFF (vvv , b) = BBB(vvv , ∂xb)

⇔
󰀫
∂tη + ∂xq = 0,

∂tq + ∂x

󰀓
uq + g(η2−2ηb)

2

󰀔
= −gη∂xb.

b : R → R is the topography parametrization ;

vvv : R× R+ → Θ is the vector gathering total elevation η and
discharge q, with Θ = {(η, q) ∈ R2 | H := η − b ≥ 0};
FFF : Θ× R → R2 is the nonlinear flux funcion ;

BBB : Θ×R → R2 is the source term depending on topography.

→ Theoretical derivation of Shallow-Water from incompressible
Euler equations.
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High-order discontinuous Galerkin schemes

II. Discontinuous Galerkin schemes
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High-order discontinuous Galerkin schemes

Overview of dG schemes and advantages

Figure: Continuous and discontinuous Galerkin methods.

High-order schemes, well-adapted to unstructured meshes;

Applied to various problems, including hyperbolic PDEs;

Local formulation interesting for parallel computating.

→ Development from scratch of a simple C++ program for solving
scalar conservation laws using high-order dG (available on Git).
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High-order discontinuous Galerkin schemes

Limits for hyperbolic and non-linear equations

!△ Presence of non-physical oscillations when approaching
discontinuities or strong gradients, leading to :
→ Non preservation of maximum principle;
→ Loss of water height positivity in Shallow-Water context.

(a) Without correction. (b) With FVS correction.

Figure: Numerical solution of ∂tu + c∂xu = 0, with u0(x , t) := 1[0.4,0.6].
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High-order discontinuous Galerkin schemes

III. Finite-Volume subcell correction
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Finite-Volume subcell correction

Principle

Goals. Refine the geometry by dividing each cell into subcells,
and use first-order Finite-Volume scheme in order to handle the
robustness issues.

Figure: Sub-mean values on cell ωi = [xi− 1
2
, xi+ 1

2
].
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Finite-Volume subcell correction

Reformulating dG as FV-like on SCL

Needs. Reformulating dG schemes as Finite-Volume like schemes at
subcell scale using sub-mean values, i.e. the formulation on cell ωi

󰁝

ωi

ϕ∂tu
ωi
h dx =

󰁝

ωi

f (uωi
h )∂xϕ dx −

󰀅
Fϕ

󰀆x
i+1

2
x
i− 1

2

, ∀ϕ ∈ Pk(ωi ),

gives us the local formulations on subcells Sωi
m

∂tu
ωi
m = − 1

|Sωi
m |

󰀕
󰁥Fωi

m+ 1
2

− 󰁥Fωi

m− 1
2

󰀖
, ∀m ∈ [[1, k + 1]],

where the k + 2 reconstructed fluxes 󰁥Fωi

m+ 1
2

are defined by

󰁥Fωi

m+ 1
2

= f ωi
h (󰁨xωi

m+ 1
2

)− C
i− 1

2

m+ 1
2

󰀓
f ωi
h (xi− 1

2
)−Fi− 1

2

󰀔

− C
i+ 1

2

m+ 1
2

󰀓
f ωi
h (xi+ 1

2
)−Fi+ 1

2

󰀔
.
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Finite-Volume subcell correction

A posteriori approach

Introduced on Shallow-Water during Ali Haidar’s PhD;
Replacing reconstructed fluxes with 1st order FV flux on
non-admissible subcells.

Figure: A posteriori correction on subcell Sω
m ⊂ ω.
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Finite-Volume subcell correction

A priori approach

Goal. Combining reconstructed fluxes with 1st order FV flux, i.e.
introducing the following blended fluxes :

󰁨Fωi

m± 1
2

= F ∗,FV
m± 1

2

+ θm± 1
2

󰀕
󰁥Fωi

m± 1
2

− F ∗,FV
m± 1

2

󰀖
,

with θm± 1
2
∈ [0, 1] the coefficient assuring at local scale any

convex property we want (entropy, preservation of maximum
principle, water height positivity for Shallow-Water ...)
→ Theoretical proofs for preserving maximum principle.

Benefits.

Simpler implementation opening the method to more people;

No need to modify the neighbors of non-admissible cells,
unlike a posteriori approach.
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Finite-Volume subcell correction

IV. Stabilization of Shallow-Water
equations
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Stabilization of Shallow-Water equations

Preservation of water-height positivity

For m ∈ [[1, k + 1]] the following NSW dG formulation :

󰁝

ω
∂tvvvωφ

ω
m = −

󰁝

ω
∂xFFFωφ

ω
m +

󰁝

ω
BBBωφ

ω
m +

󰀅
φω
m(FFFω −F)

󰀆
∂ω

,

can be written as the FV like scheme on subcells :

∂tvvvω = − 1

|Sω
m|

󰀓
󰁨FFF
ω

m+ 1
2
− 󰁨FFF

ω

m− 1
2

󰀔
+BBB

ω
m,

with 󰁨FFF
ω

m+ 1
2
:= FFF ∗,FV

m+ 1
2

+Θm+ 1
2

󰀕
󰁥FFF
ω

m+ 1
2
− FFF ∗,FV

m+ 1
2

󰀖
.

!△ In order to use our stabilization method on Shallow-Water
equations, we need to ensure that Θm+ 1

2
= diag(θη

m+ 1
2

, θq
m+ 1

2

)

assure the preservation of water-height positivity and maximum
principle → Theoretical proofs on intermediate Riemann states.
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Stabilization of Shallow-Water equations

Internship continuation and Ph.D. goals

Internship continuation. Implementing the a priori stabilization
method in my homemade C++ code for scalar conservation law and
in WaveBox for Shallow-Water equations.

Long term goals. Pursuing in Ph.D. to :

Construct theoretical model for coupling those equations with
a floating object in two dimension;

Develop and implement the a priori correction for this problem
and handle the coupling using an Arbitrary Lagrangian
Eulerian (ALE) description.

Applications. Renewable energy, notably wave energy converters
modeling and optimization.
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Stabilization of Shallow-Water equations

Figure: The Great Wave of Kanagawa, Hokusai, 1830.

Thank you for your attention !


