Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids

Sacha Cardonna, Fabien Marche & François Vilar

Institute of Mathematics Alexander Grothendieck, University of Montpellier

Congrès Interdisciplinaire sur les Modèles Avancés de Vagues Aussois, France – May 2025

Local subcell monolithic DG/FV scheme for nonlinear shallow water equations with source terms on unstructured grids

Some keywords.

- Local subcell monolithic DG/FV scheme: combines DG accuracy with FV robustness for stabilization;
- Nonlinear shallow water equations: describe the water waves under the hydrostatic assumption;
- Source terms: account for geometry and physical effects (e.g., topography, friction)

1. Introduction

Nonlinear shallow water equations Finite Volume and Discontinuous Galerkin methods Motivations

2. Discontinuous Galerkin as a subcell Finite Volume scheme

DG general formulation Mesh subdivision Flux reconstruction

3. Monolithic DG-FV subcell scheme

Formulation Source term treatment Computation of the blending coefficient Well-balancing property

4. Numerical results

5. Conclusion and perspectives

1. Introduction

Nonlinear shallow water equations Finite Volume and Discontinuous Galerkin methods Motivations

- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction
- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results
- 5. Conclusion and perspectives

1. Introduction

Nonlinear shallow water equations

Finite Volume and Discontinuous Galerkin methods Motivations

- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction
- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results
- 5. Conclusion and perspectives

IMAG

Shallow water asymptotics

Nonlinear shallow water (NSW) equations

$$\begin{aligned} \partial_t \mathbf{v} + \nabla_{\mathbf{x}} \cdot \mathbb{F}(\mathbf{v}, b) &= \mathbf{B}(\mathbf{v}, \nabla_{\mathbf{x}} b) \\ \Leftrightarrow \begin{cases} \partial_t \eta + \nabla_{\mathbf{x}} \cdot \mathbf{q} = 0, \\ \partial_t q + \nabla_{\mathbf{x}} \cdot \left(\mathbf{u} \otimes \mathbf{q} + \frac{g\eta}{2} (\eta - 2b) \mathbb{I}_2 \right) = -g\eta \nabla_{\mathbf{x}} b \end{aligned}$$

- $b : \mathbb{R}^2 \to \mathbb{R}$ is the **topography** parametrization;
- ▶ $\mathbf{v} : \mathbb{R}^2 \times \mathbb{R}_+ \to \mathcal{H}^+$ is the vector gathering **total elevation** η and **discharge** $(q_x, q_y)^T$, with $\mathcal{H}^+ = \{(\eta, q_x, q_y) \in \mathbb{R}^3 \mid H := \eta b \ge 0\};$
- $\mathbb{F} : \mathcal{H}^+ \times \mathbb{R} \to \mathcal{M}_{2 \times 3}(\mathbb{R})$ is the nonlinear flux tensor;
- ▶ **B** : $\mathcal{H}^+ \times \mathbb{R} \to \mathbb{R}^3$ is the **source term** depending on topography.

1. Introduction

Nonlinear shallow water equations Finite Volume and Discontinuous Galerkin methods Motivations

- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction
- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results
- 5. Conclusion and perspectives

Multidimensional conservation law

$$\partial_{t} \mathbf{U}(\mathbf{x}, t) + \nabla \cdot \mathbb{F}(\mathbf{U}(\mathbf{x}, t)) = 0, \quad \mathbf{U} \in \mathbb{R}^{m}, \quad \mathbf{x} \in \Omega, \quad \omega_{c} \subset \Omega$$

$$\blacktriangleright \ \overline{\mathbf{U}}_{\omega_{c}}(t) = \frac{1}{|\omega_{c}|} \int_{\omega_{c}} \mathbf{U}(\mathbf{x}, t) \, d\mathbf{x}$$

$$\blacktriangleright \ \overline{\mathbf{U}}_{\omega_{c}}(t_{n+1}) = \overline{\mathbf{U}}_{\omega_{c}}(t_{n}) - \frac{1}{|\omega_{c}|} \int_{t_{n}}^{t_{n+1}} \int_{\partial \omega_{c}} \mathbb{F}(\mathbf{U}(\mathbf{x}, t)) \cdot \mathbf{n}_{\partial \omega_{c}} \, dS \, dt$$

Finite Volume discretization and scheme

- ▶ Domain partition: $\Omega = \bigcup_{c} \omega_{c}$, with each ω_{c} a control volume
- \mathcal{V}_c : set of neighbors sharing an edge with ω_c
- ▶ ℓ_{cv} : length of the interface $\omega_c \cap \omega_v$
- ► Piecewise constant solution: $\mathbf{U}_{c}^{n+1} = \mathbf{U}_{c}^{n} \frac{\Delta t^{n}}{|\omega_{c}|} \sum_{\mathbf{v} \in \mathcal{V}_{c}} \ell_{cv} \mathbb{F}_{cv}^{*}$

where \mathbb{F}_{cv}^* is a numerical approximation of the flux across the interface.

Finite Volume schemes: pros and cons

Advantages 🗸

- Natural conservation across interfaces
- Applicable on general (unstructured) meshes
- Easy to implement for complex geometries
- Robust even on nonlinear problems

Limitations X

- Low-order accuracy without reconstruction
- Extension to high-order schemes leads to large stencils
- ► Limited flexibility for *hp*-adaptivity

An overview of Discontinuous Galerkin methods

Weak formulation

▶ Partition of the domain:
$$\mathscr{T}_h := \{\omega_1, \dots, \omega_{n_{\text{el}}}\}, \quad \overline{\Omega} = \bigcup_{\omega \in \mathscr{T}_h} \overline{\omega}$$

▶ $\int_{\omega_c} \partial_t \mathbf{U}(\mathbf{x}, t) \psi(\mathbf{x}) d\mathbf{x} - \int_{\omega_c} \mathbb{F}(\mathbf{U}, b) \cdot \nabla_{\mathbf{x}} \psi(\mathbf{x}) d\mathbf{x}$

$$+\int_{\partial \omega_c} \mathbb{F}(\mathsf{U},b)\cdot \pmb{n}_{\partial \omega_c}\,\psi(s)\,dS=0, \qquad orall \psi\in \mathcal{C}^1_0(\omega_c)$$

Discontinuous Galerkin discretization

▶ Piecewise polynomial solution, discontinuous across interfaces:

$$\mathbf{U}_h^c(\mathbf{x},t) = \sum_{m=1}^{\dim \mathbb{P}^k} \mathbf{U}_m^c(t) \phi_m^c(\mathbf{x}), \qquad orall \mathbf{x} \in \omega_c, \quad orall t \in [0, t_{\max}],$$

where the $\mathbf{U}_m^c(t)$ are the local DOFs and $\phi_m^c(\mathbf{x})$ are the basis functions As in FV framework, numerical flux \mathbb{F}^* replaces $\mathbb{F}(\mathbf{U}) \cdot \mathbf{n}_{\partial \omega_c}$ on $\partial \omega_c$

Advantages 🗸

- High-order accuracy with compact stencils
- Natural conservation across interfaces
- Suited for *hp*-adaptivity
- Well-suited for easy parallel computing
- Flexible for any meshes (unstructured, polytopal, etc.)

Limitations X

- More involving to implement than FV methods
- Non-physical oscillations when approaching strong gradients or discontinuities (like every scheme of order ≥ 2)
- Lack of nonlinear stability

1. Introduction

Nonlinear shallow water equations Finite Volume and Discontinuous Galerkin methods Motivations

- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction
- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results
- 5. Conclusion and perspectives

IMAG

Ideal setup for the NSW system

An ideal numerical scheme for the Nonlinear Shallow Water (NSW) equations should be:

- High-order accurate to capture smooth solutions and small-scale features;
- Shock-capturing to handle discontinuities and strong nonlinearities;
- Positivity-preserving to ensure non-negative water height and physical admissibility (i.e. stays in H⁺);
- Well-balanced to exactly preserve lake at rest steady states;
- Adaptable to source terms such as bottom topography and friction effects;
- Well-suited for unstructured meshes to deal with complex geometries and realistic domains.

- Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction
- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results
- 5. Conclusion and perspectives

- Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation

Mesh subdivision Flux reconstruction

- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results
- 5. Conclusion and perspectives

9/33

DG formulation through residuals

DG formulation for all $\psi_p^c \in \mathbb{P}^k(\omega_c)$

$$\sum_{m=1}^{N_k} \frac{d\mathbf{v}_m^c}{dt} \int_{\omega_c} \psi_m^c \psi_p^c \, d\mathbf{x} - \int_{\omega_c} \mathbb{F} \cdot \nabla_{\mathbf{x}} \psi_p^c \, d\mathbf{x} + \int_{\partial \omega_c} \mathbb{F}^* \cdot \mathbf{n} \, \psi_p^c \, dS = \int_{\omega_c} \mathbf{B} \psi_p^c \, d\mathbf{x}$$

Residual DG formulation for any basis function $\psi_m^c \in \mathbb{P}^k(\omega_c)$

$$\mathbb{M}_{c}\frac{d\mathbf{V}_{c}}{dt}=\Phi_{c}+\mathbf{S}_{c}$$

(V_c)_m = v^c_m(t) solution moments
(M_c)_{mp} = ∫_{ω_c} ψ^c_m(x) ψ^c_p(x) dx local mass matrix
(Φ_c)_m = ∫_{∂ω_c} ℝ^{*} · **n** ψ^c_p dS - ∫_{ω_c} ℝ(v^c_h, b^c_h) · ∇_xψ^c_p dx DG residuals
(S_c)_m = ∫_{ω_c} B(v^c_h, ∇_xb^c_h) ψ^c_p dx source term

Stabilization principle

- ► Classical stabilization: apply limiters/a posteriori correction on the full cell → risks discarding a mostly accurate solution due to a local failure
- Subcell approach: partition each cell into finer subcells to reduce the correction scale
 - \hookrightarrow enabling a $surgical\ correction,$ meaning only fix what's necessary, preserving as much of the high-order DG content as possible

Theory needed – Reformulation of DG as a subcell FV-like scheme

Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations

2. Discontinuous Galerkin as a subcell Finite Volume scheme

DG general formulation Mesh subdivision Flux reconstruction

- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results
- 5. Conclusion and perspectives

Mesh subdivision

A classical mesh ...

Figure: Unstructured simplicial mesh with $n_{\rm el} = 350$ cells.

... and its subdivision

Figure: Unstructured simplicial mesh \mathbb{P}^3 subdivision onto triangles with $n_{el} = 350$ cells.

Subdivision and submean values

Some notations

▶ For any element $\omega_c \in \mathscr{T}_h$, we define a sub-partition:

$$\mathscr{T}_{\omega_c} := \{S_1^c, \dots, S_{N_s}^c\}, \quad \overline{\omega}_c = \bigcup_{m=1}^{N_s} \overline{S}_m^c$$

- \triangleright Γ_{mp}^{c} : interface between S_{m}^{c} and its neighbor S_{p}^{v}
- ▶ n_f^m : number of faces of subcell S_m^c
- ▶ $\mathscr{F}_{S_m^c}$: set of all faces of S_m^c
- ▶ n_f^c : total number of subcell faces inside element ω_c
- ▶ \mathcal{V}_m^c : set of face-neighboring subcells of S_m^c (with $|\mathcal{V}_m^c| = n_f^m$)
- ▶ $\breve{\mathcal{V}}_m^c$: subset of \mathcal{V}_m^c containing only neighbors within the same element ω_c

Subneighbors

Figure: Two cases: subneighbor S_p inside cell ω_c (left), and subneighbor S_p inside neighbor cell ω_v (right).

IMAG

Submean values and polynomial moments (1)

Mean value of a function over a subcell $S_m^c \subset \omega_c$

For any
$$f \in L^2(\omega_c)$$
, the subcell mean value is $\overline{f}_m^c := \frac{1}{|S_m^c|} \int_{S_m^c} f(\mathbf{x}) d\mathbf{x}$.

Submean values and projection matrix

A $\mathbb{P}_{c}^{t}\mathbb{P}_{c}$ has to be **non-singular**, so we use the least-square procedure:

$$\mathbf{V}_{c} = \left(\mathbb{P}_{c}^{t}\mathbb{P}_{c}\right)^{-1}\mathbb{P}_{c}^{t}\overline{\mathbf{V}}_{c}$$

If $N_s = N_k$, then $\overline{\mathbf{V}}_c = \mathbb{P}_c \mathbf{V}_c \Leftrightarrow \mathbf{V}_c = \mathbb{P}_c^{-1} \mathbf{V}_c$.

Submean values and polynomial moments (2)

Figure: Piecewise polynomial function v_h^i and associated sub-mean-values (1D case).

Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations

2. Discontinuous Galerkin as a subcell Finite Volume scheme

DG general formulation Mesh subdivision Flux reconstruction

- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results
- 5. Conclusion and perspectives

Reconstructed DG fluxes (1)

Submean values vector derivative

Since
$$\mathbb{M}_c \frac{d\mathbf{V}_c}{dt} = \Phi_c + \mathbf{S}_c$$
 and $\overline{\mathbf{V}}_c = \mathbb{P}_c \mathbf{V}_c \implies \left[\frac{d\overline{\mathbf{V}}_c}{dt} = \mathbb{P}_c \mathbb{M}_c^{-1} (\Phi_c + \mathbf{S}_c) \right]$

Flux reconstruction to get a FV-like scheme

Let us consider the DG reconstructed flux $\widehat{\mathbb{F}}_n$ such that

$$\begin{aligned} \frac{d\overline{\mathbf{v}}_{m}^{c}}{dt} &= -\frac{1}{|S_{m}^{c}|} \int_{\partial S_{m}^{c}} \widehat{\mathbb{F}}_{n}(\mathbf{x}) \, d\mathbf{x} + (\mathbb{P}_{c} \mathbb{M}_{c}^{-1} \mathbf{S}_{c})_{m} \qquad (\text{FV-like scheme}) \\ &= -\frac{1}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} \widehat{\mathbb{F}}_{n}(\mathbf{x}) \, d\mathbf{x} + (\mathbb{P}_{c} \mathbb{M}_{c}^{-1} \mathbf{S}_{c})_{m} \qquad (\partial S_{m}^{c} = \cup_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} \Gamma_{mp}^{c}) \\ &= -\frac{1}{|S_{m}^{c}|} \left(\sum_{S_{p}^{v} \in \check{\mathcal{V}}_{m}^{c}} \widehat{\mathbb{F}}_{n}(\mathbf{x}) \, d\mathbf{x} + \int_{\partial \omega_{c} \cap \partial S_{m}^{c}} \mathbb{F}_{n}^{*} \, d\mathbf{x} \right) + (\mathbb{P}_{c} \mathbb{M}_{c}^{-1} \mathbf{S}_{c})_{m} \end{aligned}$$
under the hypothesis that $\widehat{\mathbb{F}}_{n|\partial \omega} = \mathbb{F}^{*}$ for all $\omega \in \mathscr{T}_{h}$.

Reconstructed DG fluxes (2)

Interface reconstructed flux

We define
$$\widehat{\mathbb{F}}_{mp}$$
 at interface Γ_{mp}^{c} as: $\int_{\Gamma_{mp}^{c}} \widehat{\mathbb{F}}_{n}(\mathbf{x}) d\mathbf{x} = \varepsilon_{mp}^{c} \widehat{\mathbb{F}}_{mp}$,
where subface orientation is carried through ε_{mp}^{c} , such that $\varepsilon_{pm}^{c} = -\varepsilon_{mp}^{c}$.

Reconstructed flux system

$$\boxed{-\mathbb{A}_{c}\widehat{\mathbb{F}}_{c}=\mathbb{D}_{c}\frac{d\overline{\mathbf{V}}_{c}}{dt}+\partial\mathbb{F}_{c}}$$

►
$$(\widehat{\mathbb{F}}_c)_{mp} = \ell_{mp}\widehat{\mathbb{F}}_{mp}$$

► $(A_c)_{mp} = \varepsilon_{mp}^c$
► $(\mathbb{D}_c)_m = |S_m^c|$
► $(\partial \mathbb{F}_c)_m = \int_{\partial \omega_c \cap \partial S_-^c} \mathbb{F}_n^* d\mathbf{x}$

interior subfaces fluxes adjacency matrix subvolume matrix

cell boundary contribution

A Since ker $\mathbb{A}_c \neq \{\mathbf{0}\}$, we use a *Graph Laplacian technique*

A UNIVERSITE

Reconstructed DG fluxes (3)

Residual definition of reconstructed fluxes

$$\widehat{\mathbb{F}}_{c} = -\mathbb{A}_{c}^{t} \mathcal{L}_{c}^{-1} \left(\mathbb{D}_{c} \mathbb{P}_{c} \mathbb{M}_{c}^{-1} \Phi_{c} + \partial \mathbb{F}_{c} \right)$$

where \mathcal{L}_c^{-1} is the gen. inverse of $\mathbb{L}_c := \mathbb{A}_c \mathbb{A}_c^t$ on the orthogonal of its kernel:

$$\mathcal{L}_c^{-1} = \left(\mathbb{L}_c + \lambda\Pi\right)^{-1} - rac{1}{\lambda}\Pi, \qquad \Pi = rac{1}{N_s}(1\otimes 1) \in \mathcal{M}_{N_k}, \qquad orall \lambda
eq 0$$

R. Abgrall, Some Remarks about Conservation for Residual Distribution Schemes. Methods Appl. Math., 18:327-351, 2018.

Few remarks

- Source term is excluded in the definition since only flux-dependent integrals are considered in reconstruction;
- ▶ Implementation: only Φ_c and boundary terms $\partial \mathbb{F}_c$ depend on time, but all the other terms are precomputable;
- ► Alternative expression: using spanning set of subresolution functions $\phi_m^c = p_{\omega_c}^k(\mathbb{1}_m^c)$, where $p_{\omega_c}^k$ is the L^2 -projector on cell ω_c .

DG schemes \equiv Subcell FV schemes

Theorem (equivalence of DG and subcell FV schemes)

The NSW-DG residual scheme $\frac{d\mathbf{V}_c}{dt} = \mathbb{M}_c^{-1}(\Phi_c + \mathbf{S}_c)$ can be recast into N_s FV-like subcell schemes as

$$\frac{d\overline{\mathbf{V}}_{c}}{dt} = -\mathbb{D}_{c}^{-1}\left(\mathbb{A}_{c}\widehat{\mathbb{F}}_{c} + \partial\mathbb{F}_{c}\right) + \overline{\mathbf{S}}_{c}$$

where $\overline{\mathbf{S}}_c := \mathbb{P}_c \mathbb{M}_c^{-1} \mathbf{S}_c$ contains the submean values of source term projection, i.e. i.e. $\overline{\mathbf{S}}_c = \frac{1}{2} \int_{-\infty}^{\infty} \mathbf{K}_c (\mathbf{S}_c - \mathbf{S}_c) \mathbf{V}_c (\mathbf{S}_c) \mathbf{S}_c$

$$\overline{\mathbf{B}}_m^c := \frac{1}{|S_m^c|} \int_{S_m^c} p_{\omega_c}^k \left(\mathbf{B}(\mathbf{v}_h, \nabla_{\mathbf{x}} b_h) \right) \, d\mathbf{x}.$$

DG equivalent semi-discrete scheme on every subcell $S_m^c \subset \omega_c$

$$\frac{d\overline{\mathbf{v}}_{m}^{c}}{dt} = -\frac{1}{|S_{m}^{c}|} \sum_{S_{p}^{c} \in \mathcal{V}_{m}^{c}} \ell_{mp} \widehat{\mathbb{F}}_{mp} + \overline{\mathbf{B}}_{m}^{c}, \qquad \forall m \in [\![1, N_{s}]\!]$$

- 1. Introduction Nonlinear shallow water equations Finite Volume and Discontinuous Galerkin methods Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction
- 3. Monolithic DG-FV subcell scheme

Formulation Source term treatment Computation of the blending coefficient Well-balancing property

- 4. Numerical results
- 5. Conclusion and perspectives

- Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction

3. Monolithic DG-FV subcell scheme Formulation

Source term treatment Computation of the blending coefficient Well-balancing property

- 4. Numerical results
- 5. Conclusion and perspectives

Combining DG and FV frameworks (1)

Combining DG and FV frameworks (2)

Our numerical solution should satisfy the following properties:

- ► Accuracy: high-order precision can be required → natural in DG schemes; requires mesh refinement in FV schemes
- ▶ Physical admissibility: in NSW context, the solution should stay in \mathcal{H}^+ \hookrightarrow automatic in FV schemes; requires dedicated techniques in DG schemes
- ► Stability / No spurious oscillations: satisfy a discrete maximum principle → guaranteed in FV schemes; not ensured by DG schemes (limiters needed)

Idea – blending DG reconstructed fluxes and FV fluxes at subcell scale

Combining DG and FV frameworks (3)

Blended fluxes and blending coefficient

For every face $\Gamma_{mp}^{c} \in \mathscr{F}_{S_{m}^{c}}$, the high-order DG reconstructed flux $\widehat{\mathbb{F}}_{mp}$ and a first-order FV flux $\mathbb{F}_{mp}^{*,\text{FV}}$ are assembled in a convex way:

$$\widetilde{\mathbb{F}}_{\textit{mp}} = \mathbb{F}_{\textit{mp}}^{*,\textit{fv}} + \theta_{\textit{mp}} \left(\widehat{\mathbb{F}}_{\textit{mp}} - \mathbb{F}_{\textit{mp}}^{*,\textit{fv}} \right) = \mathbb{F}_{\textit{mp}}^{*,\textit{fv}} + \theta_{\textit{mp}} \Delta \mathbb{F}_{\textit{mp}}$$

A The blending coefficient θ_{mp} ∈ [0, 1] is:
 Computed *a priori* on each Γ^c_{mp}, at each time step (or RK stage);
 Uniquely defined *i.e.* θ_{mp} = θ_{pm}, for all S^v_p ∈ V^c_m.

Monolithic DG-FV subcell scheme with forward Euler time integration

$$\overline{\mathbf{v}}_{m}^{c,n+1} = \overline{\mathbf{v}}_{m}^{c,n} - \frac{\Delta t^{n}}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} \ell_{mp} \widetilde{\mathbb{F}}_{mp} + \Delta t^{n} \overline{\mathbf{B}}_{m}^{c,n}, \qquad \forall m \in [\![1, N_{s}]\!]$$

- Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction

3. Monolithic DG-FV subcell scheme

Formulation Source term treatment Computation of the blending coefficient Well-balancing property

- 4. Numerical results
- 5. Conclusion and perspectives

Source term treatment

Flowchart of the discretization

- $\boldsymbol{\heartsuit}$ Bridging polynomial degrees of freedom and subcell-averaged values
- 1. Subcell averages: compute \overline{b}_{m}^{c} and $\overline{\eta}_{m}^{c}$ on each subcell, then reconstruct b_{h} and η_{h} via projection matrix \mathbb{P}_{c} ;
- 2. **Projection**: evaluate $\mathbf{B}(\mathbf{v}_h, \nabla_{\mathbf{x}} b_h)$ at quadrature nodes, then apply an L^2 projection onto \mathbb{P}^k ;
- 3. **Integration**: compute the mean value of the projected source over each subcell:

$$\overline{\mathbf{B}}_m^c := \frac{1}{|S_m^c|} \int_{S_m^c} \mathbf{B}_h \, d\mathbf{x}$$

Implementation remark

Formally corresponds to multiplying the DG source integral by $\mathbb{P}_{c}\mathbb{M}_{c}^{-1}$:

$$\overline{\mathbf{B}}_{m}^{c} = \mathbb{P}_{c} \mathbb{M}_{c}^{-1} \left(\int_{\omega_{c}} \mathbf{B}_{h} \varphi_{h} \, d\mathbf{x} \right)$$

Generalization to algebraic/geometric source terms

Topography and (nonlinear) friction effects
$$\mathbf{S}(\mathbf{v}, b) := \mathbf{B}(\mathbf{v}, \nabla_{\mathbf{x}} b) + \mathbf{Fr}(\mathbf{v}, b)$$
 $\blacktriangleright \mathbf{B}(\mathbf{v}, \nabla_{\mathbf{x}} b) = (0, -g\eta \nabla_{\mathbf{x}} b)^t$ Topography source term $\vdash \mathbf{Fr}(\mathbf{v}, b) = \begin{cases} (0, -k_f^2 \mathbf{q})^t, k_f > 0 & \text{Linear friction law} \\ (0, -n_f^2 \frac{\mathbf{q} ||\mathbf{q}||}{(\eta - b)^{\gamma}})^t, n_f, \gamma > 0 & \text{Manning friction law} \end{cases}$

 $\textbf{3} Handled the same way as previously \rightarrow \textbf{easily generalizable}$

Applications to Serre–Green–Naghdi (SGN) equations

Reformulation: Elliptic problem + NSW with dispersive source term

- 1. Elliptic problem solved *independently*, using a finite element method;
- 2. Resulting dispersive source term discretized within the NSW framework.

- Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction

3. Monolithic DG-FV subcell scheme

Formulation Source term treatment Computation of the blending coefficient Well-balancing property

- 4. Numerical results
- 5. Conclusion and perspectives

Reformulation as a Godunov-like scheme

Solution at t^{n+1} as a convex combination of quantities defined at t^n

$$\begin{split} \mathbf{\bar{v}}_{m}^{c,n+1} &= \mathbf{\bar{v}}_{m}^{c,n} - \frac{\Delta t^{n}}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} \ell_{mp} \mathbf{\widetilde{E}}_{mp} + \Delta t^{n} \mathbf{\overline{B}}_{m}^{c,n} \\ &+ \frac{\Delta t^{n}}{|S_{m}^{c}|} \mathbf{\mathbb{F}} \left(\mathbf{\bar{v}}_{m}^{c,n}, \mathbf{\bar{b}}_{m}^{c} \right) \cdot \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} \ell_{mp} \mathbf{n}_{mp} \pm \frac{\sigma \Delta t^{n}}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} \ell_{mp} \mathbf{\bar{v}}_{m}^{c,n} \\ &= \left(1 - \frac{\sigma \Delta t^{n}}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} \ell_{mp} \right) \mathbf{\overline{v}}_{m}^{c,n} + \frac{\sigma \Delta t^{n}}{|S_{m}^{c}|} \sum_{S_{p}^{v} \in \mathcal{V}_{m}^{c}} \ell_{mp} \mathbf{\bar{v}}_{mp}^{*,-} + \Delta t^{n} \mathbf{\overline{B}}_{m}^{c,n} \end{split}$$

$$\bullet \mathbf{\widetilde{v}}_{mp}^{*,-} \text{ are the interior blended Riemann intermediate states \\ \mathbf{\widetilde{v}}_{mp}^{*,-} &:= \mathbf{\overline{v}}_{m}^{c,n} - \frac{\mathbf{\widetilde{E}}_{mp} - \mathbf{\mathbb{E}} \left(\mathbf{\overline{v}}_{m}^{c,n}, \mathbf{\overline{b}}_{m}^{c} \right) \cdot \mathbf{n}_{mp}}{\sigma} = \mathbf{v}_{mp}^{*,-} - \theta_{mp} \left(\frac{\mathbf{\widehat{E}}_{mp} - \mathbf{\mathbb{E}}_{mp}^{*,\mathrm{FV}}}{\sigma} \right); \end{aligned}$$

Analytical formula to ensure water height positivity

Relying on 1st-order FV Riemann intermediate states

Proof of the natural **preservation of water-height positivity** for 1^{st} -order elevation Riemann FV states $\eta_{\it mp}^{*,\pm}$

 \hookrightarrow Allows us to rely on the robustness of FV framework to ensure the properties we want

Physical admissibility detector

$$\theta_{mp}^{\mathcal{H}^+} := \min\left(\theta_{mp}^{\mathcal{H}^+,-},\theta_{mp}^{\mathcal{H}^+,+}\right)$$

$$\theta_{mp}^{\mathcal{H}^+,-} := \frac{\sigma\left(\eta_{mp}^{*,-} - \overline{b}_m^c\right)}{\Delta \mathbb{F}_{mp}} \quad \text{if } \Delta \mathbb{F}_{mp} > 0, \qquad \theta_{mp}^{\mathcal{H}^+,-} = 1 \quad \text{else;}$$

$$\theta_{mp}^{\mathcal{H}^+,+} := \frac{\sigma\left(\overline{b}_p^v - \eta_{mp}^{*,+}\right)}{\Delta \mathbb{F}_{pm}} \quad \text{if } \Delta \mathbb{F}_{pm} < 0, \qquad \theta_{mp}^{\mathcal{H}^+,+} = 1 \quad \text{else.}$$

Analytical formulas to prevent spurious oscillations

Mimicking a local maximum principle

$$\alpha_m^{\mathsf{c}} := \min_{S_p^{\mathsf{v}} \in \mathcal{N}(S_m^{\mathsf{c}})} \left(\overline{\eta}_p^{\mathsf{v},n}, \eta_{mp}^{*,-} \right) \leq \overline{\eta}_m^{\mathsf{c},n+1} \leq \max_{S_p^{\mathsf{v}} \in \mathcal{N}(S_m^{\mathsf{c}})} \left(\overline{\eta}_p^{\mathsf{v},n}, \eta_{mp}^{*,-} \right) =: \beta_m^{\mathsf{c}}$$

where \mathcal{P}_m^c is the set of vertices \mathbf{x}_p of subcell S_m^c and

$$\mathcal{N}(S_m^c) := \bigcup_{\mathbf{x}_p \in \mathcal{P}_m^c} \{S_q \mid \mathbf{x}_p \in S_q\}$$

Subcell numerical admissibility detector

$$\theta_{mp}^{\mathsf{SubNAD}} := \min\left(1, \left|\frac{\sigma}{\Delta \mathbb{F}_{mp}}\right| \begin{cases} \min\left(\beta_p^{\mathsf{v}} - \eta_{mp}^{*,+}, \ \eta_{mp}^{*,-} - \alpha_m^{\mathsf{c}}\right) & \text{if } \Delta \mathbb{F}_{mp} > 0\\ \min\left(\beta_m^{\mathsf{c}} - \eta_{mp}^{*,-}, \ \eta_{mp}^{*,+} - \alpha_p^{\mathsf{v}}\right) & \text{if } \Delta \mathbb{F}_{mp} < 0 \end{cases} \right)$$

▲ For NSW, no local maximum principle for the conserved variable! → needs to be **relaxed** in the presence of **smooth extremas**

- Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction

3. Monolithic DG-FV subcell scheme

Formulation Source term treatment Computation of the blending coefficient Well-balancing property

- 4. Numerical results
- 5. Conclusion and perspectives

Preservation of steady-states (1)

Why does it matter ?

- Preserves lake at rest steady states exactly, avoiding spurious motions;
- Reduces numerical errors near equilibrium, especially when small perturbations are present;
- Essential for wet/dry interfaces, where small oscillations can destabilize the scheme.

Well-balancing (WB) property

Providing that the integrals of discrete formulation are exactly computed, we have the following result:

$$\forall n \in \mathbb{N}, \quad \forall \eta^e \in \mathbb{R}, \quad \left(\eta_h^n = \eta^e \text{ and } \mathbf{q}_h^n = \mathbf{0}\right) \Longrightarrow \left(\eta_h^{n+1} = \eta^e \text{ and } \mathbf{q}_h^{n+1} = \mathbf{0}\right)$$

Preservation of steady-states (2)

Sketch of proof

Objective: showing that numerical fluxes are cancelling the source term *i.e.*

$$\frac{1}{|S_m^c|} \sum_{S_p^v \in \mathcal{V}_m^c} \ell_{mp} \widetilde{\mathbb{F}}_{mp} = \overline{\mathbf{B}}_m^{c,n} \qquad \text{s.t.} \qquad \overline{\mathbf{v}}_m^{c,n+1} = \overline{\mathbf{v}}_m^{c,n}.$$

► Exact integration required → natural with high-order quadrature;

Under well-balanced assumptions:

$$abla_{\mathbf{x}} \cdot \mathbb{F}(\mathbf{v}_{c}, b_{c}) = \mathbf{B}(\mathbf{v}_{c},
abla_{\mathbf{x}} b_{c}), \quad orall \omega_{c} \in \mathscr{T}_{h};$$

► Fluxes $\widehat{\mathbb{F}}_{mp}$ and $\mathbb{F}_{mp}^{*,\text{FV}}$ match the continuous flux $\mathbb{F}_{h}^{c} \cdot \mathbf{n}_{mp}$ under equilibrium;

▶ \mathbb{F}_{mp} is built as a convex combination of these well-balanced fluxes \hookrightarrow preserves equilibrium as well !

- Introduction
 Nonlinear shallow water equations
 Finite Volume and Discontinuous Galerkin methods
 Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction
- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property

4. Numerical results

5. Conclusion and perspectives

Test 1 - Order of accuracy assessment

Steady vortex with \mathcal{C}^{∞} topography

▶ Domain: $\Omega = [-5, 5]^2$ Degree: k = 1, 2, 3 Mesh: $n_{el} = 200 \rightarrow 12800$

► Goal: convergence of the scheme on a smooth solution with a consistent discretization of the topography source term

k	1		2		3	
h	$E_{L^2}^{\eta}$	$q_{L^2}^\eta$	$E_{L^2}^{\eta}$	$q_{L^2}^\eta$	$E_{L^2}^{\eta}$	$q_{L^2}^\eta$
1	9.445E-2	2.35	1.529E-2	2.91	4.580E-3	4.19
$\frac{1}{2}$	1.854E-2	2.16	2.039E-3	3.03	2.505E-4	4.10
$\frac{1}{4}$	4.158E-3	2.07	2.491E-4	2.97	1.465E-5	4.00
$\frac{1}{8}$	9.923E-4	_	3.187E-5	_	9.165E-7	_

Figure: L^2 -errors between numerical and analytical solutions and convergence rates for η at time t = 0.1 sec.

Figure: Steady vortex – Exact (left) and \mathbb{P}^3 numerical (right) height at final time t = 0.1 sec on 800 cells.

Test 2 – Well-balancing assessment

Well-balancing with dry area

► Domain: $\Omega = [0, 2] \times [0, 1]$ Degree: k = 4 Mesh: $n_{el} = 2064$

▶ Goal: no stability issue, preservation of water-height positivity

Figure: \mathbb{P}^4 initial solution.

Figure: At t = 20 sec, \mathbb{P}^4 elevation (top) and map of blending coefficient means per subcell (bottom).

Test 3 – Dam-break problems (1)

Dam-break on a wet bed

► Domain: $\Omega = [0, 1000] \times [0, 200]$ Degree: k = 4 Mesh: $n_{el} = 350$

Goal: handling shock waves and rarefaction fronts

Figure: At t = 32 sec, \mathbb{P}^4 pure DG elevation (left) and monolithic DG/FV subcells elevation (right).

Figure: At t = 18 sec, \mathbb{P}^4 unlimited DG elevation (top), monolithic DG/FV subcells elevation (center) and map of blending coefficient means per subcell (bottom).

Test 3 – Dam-break problems (2)

Dam-break on a dry bed with friction

Domain: $\Omega = [0, 1000] \times [0, 200]$ **Degree:** k = 3 **Mesh:** $n_{\text{el}} = 350$

► Goal: treating wet/dry interfaces, supplemented with friction

Figure: Snapshots of \mathbb{P}^3 free surface elevation and blending density profiles for $t \in [10, 60]$ sec for $k_f = 0.5$.

Figure: At t = 30 sec, \mathbb{P}^3 elevation (top), discharge norm (center) and map of blending coefficient means per subcell (bottom).

Test 4 - Rock-wave interactions

Single wave collapsing on a Gaussian rock

► Domain: $\Omega = [5, 25] \times [0, 30]$ Degree: k = 6 Mesh: $n_{el} = 584$

 Goal: assessing robustness and correct shock-capturing in challenging case

Figure: Unstructured simplicial mesh \mathbb{P}^6 subdivision onto triangles with $n_{\rm el} = 584$ cells.

Figure: Snapshots of \mathbb{P}^6 elevation at several times (and link to simulation).

- 1. Introduction Nonlinear shallow water equations Finite Volume and Discontinuous Galerkin methods Motivations
- 2. Discontinuous Galerkin as a subcell Finite Volume scheme DG general formulation Mesh subdivision Flux reconstruction
- 3. Monolithic DG-FV subcell scheme Formulation Source term treatment Computation of the blending coefficien Well-balancing property
- 4. Numerical results

5. Conclusion and perspectives

Ph.D. objectives

We want an ideal scheme to solve the Nonlinear Shallow Water (NSW) equations, such that we can then study:

wave-structure interactions

From the theory...

to its potential applications...

Ongoing and upcoming work

What has been done ...

S.C., A. Haidar, F. Marche & F. Vilar, *Monolithic DG-FV subcell schemes* for nonlinear hyperbolic system with source terms. Applications to shallow water asymptotics. In preparation. 2025.

S.C., F. Marche & F. Vilar, Local monolithic DG-FV subcell scheme for 2D NSW on unstructured grids. In preparation. 2025.

... and what remains!

- Designing a mixed HHO/DG-FV subcells method for wave-structure interactions;
- Adaptation of the method to moving or deforming meshes via an ALE framework;
- Extension to Green-Naghdi equations in 2D case.

Thank you for your attention!

Figure: The Great Wave of Kanagawa, Hokusai, 1830.

E-mail: sacha.cardonna@umontpellier.fr
 Website: sachacardonna.github.io

Figure: Subdivision of a coarse mesh into subcells with their global numbering (left), alongside the quadrature points for subcell interiors and faces (right).

IMAG

Remark about initialization

Initialization strategy

Initialization is performed via subcell averages followed by projection using \mathbb{P}_{c} , instead of L^{2} projection or interpolation as usually done in DG schemes

 \hookrightarrow this guarantees $\mathbf{v}_h \in \mathcal{H}^+$ at t = 0, and enforces $\eta_h = b_h$ in dry zones

A Since b_b is discontinuous across cells, hydrostatic reconstruction is applied to both DG and subcell FV fluxes.

Figure: \mathbb{P}^3 dam-break problem initialization.

Assuring both WB and positivity in numerical fluxes

② Hydrostatic reconstruction framework used on both DG and subcell FV fluxes \hookrightarrow ensures **positivity** of the water height, even for discontinuous topography

At each interface $\Gamma_{cv(k)}$ (resp. subinterface $\Gamma_{mp(k)}$), reconstructed values are defined:

► Topography rec.:
$$\widetilde{b}_k = \max(b_k^-, b_k^+), \quad \check{b}_k = \widetilde{b}_k - \max(0, \widetilde{b}_k - \eta_k^-)$$

▶ Water height/elevation rec.: $\check{H}_k^{\pm} = \max(0, \eta_k^{\pm} - \widetilde{b}_k), \quad \check{\eta}_k^{\pm} = \check{H}_k^{\pm} + \widetilde{b}_k$

• Modified states:
$$\check{\mathbf{v}}_k^{\pm} = \left(\check{\eta}_k^{\pm}, \frac{\check{H}_k^{\pm}}{H_k^{\pm}} \mathbf{q}_k^{\pm}\right)^{\dagger}$$

These are then used in a Lax-Friedrichs-type flux \mathbb{F}^* , completed by a correction term $\check{\mathbb{F}}_{cv(k)}$ to ensure well-balancing:

$$\mathbb{F}_{cv(k)}^{*} = \mathbb{F}^{*}(\check{\mathbf{v}}_{k}^{-},\check{\mathbf{v}}_{k}^{+},\check{b}_{k},\check{b}_{k},\boldsymbol{n}_{cv(k)}) + \check{\mathbb{F}}_{cv(k)}$$

Alternative discretization of the source term

$$\overline{\mathbf{B}}_{m}^{c} = \overline{\mathbf{B}}_{m}^{c, \mathrm{fv}} + \theta_{m}^{c} \left(\overline{\mathbf{B}}_{m}^{c, \mathrm{dg}} - \overline{\mathbf{B}}_{m}^{c, \mathrm{fv}} \right)$$

Remark about blending smoothening

Why smoothening blending coefficient?

A sharp switch between low and high-order fluxes (i.e., $\theta_{mp} = 0$ vs. $\theta_{mp} = 1$) may cause local oscillations

 \hookrightarrow blending smoothers designed to mitigate abrupt transitions

▶ Mean-value smoother (default in experiments):

$$\theta_m^c = \frac{1}{\#\mathcal{V}_m^c} \sum_{S_p^v \in \mathcal{V}_m^c} \theta_{mp}, \quad \widetilde{\theta}_{mp} = \min\left(\theta_{mp}, \frac{1}{\#\mathcal{V}_{mp}} \sum_{S_q^v \in \mathcal{V}_{mp}} \theta_q^v\right)$$

 \hookrightarrow Less diffusive, smoother transitions

Minimum-value smoother:

$$\theta_m^c = \min_{S_p^v \in \mathcal{V}_m^c} \theta_{mp}, \quad \widetilde{\theta}_{mp} = \min\left(\theta_{mp}, \min_{S_q^v \in \mathcal{V}_{mp}} \theta_q^v\right)$$

 \hookrightarrow Stronger damping near discontinuities