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Overview of this talk

Designing numerical methods for free-surface flows
towards reliable wave–structure interactions

Some keywords.
▶ Numerical methods: mathematical tools to simulate physical systems that

can’t be solved analytically;
▶ Free-surface flows: time-dependent flows (here we focus on water waves

governed by nonlinear equations);
▶ Wave–structure interactions: modeling how waves impact or are affected

by obstacles like rocks, walls, or offshore structures.
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Some questions

1. Why do we model physical phenomena with PDEs?

2. What are the water waves equations?

3. How can we solve these equations?

4. What is the idea behind our approach?

5. How well does it perform and where is it going?
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From real-world phenomena to simulation and decisions

1. Real-world phenomena 2. Mathematical modeling
(e.g. waves, heat, biology) (describe and study equations)

3. Numerical simulation 4. Prediction and/or decision
(solve equations approximately) (risk, control, design)
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Modeling time-dependant phenomenas

PDEs as a universal tool for modeling

Many physical, biological or engineering phenomena are governed by quantities
that evolve in time and space.
↪→ Partial Differential Equations (PDEs) allow us to describe how such
quantities change, often based on conservation laws or empirical observations.

A few examples of PDE-based models

÷ Physics: the heat equation models thermal shielding and temperature
diffusion in a rocket’s body during reentry;

� Chemistry: reaction–diffusion equations model how two substances mix
to form spatial patterns;

 Biology/Medicine: model how electrical signals propagate in the heart,
helping to understand arrhythmias or defibrillation;

 Finance: the Black–Scholes equation models the price of options based
on volatility and time to maturity.
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Some definition and terminology

General form of a PDE
A partial differential equation (PDE) involves an unknown function U(t, x)
defined over time t ≥ 0 and space x ∈ Ω ⊂ Rd , and relates it to its partial
derivatives:

L (U, ∂tU, ∇xU, ∇2
x U, . . . ) = S(t, x)

▶ L is a differential operator that may be nonlinear;
▶ S is a given source term that may depend on time and space;
▶ U : [0, T ] × Ω → Rn is the unknown vector-valued function we aim to

determine.

Three major types of PDEs

▶ Elliptic: describe steady-state problems — e.g. electrostatics, stationary
temperature,...

▶ Parabolic: describe evolution with diffusion — e.g. heat conduction,
chemical diffusion,...

▶ Hyperbolic: describe wave-like behavior — e.g. sound, seismic waves,
water waves,...
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The shallow water approximation

Modeling surface waves in shallow regions

In coastal and near-shore flows, vertical motion is small compared to horizontal
one → simplify the full 3D fluid equations by averaging over depth!

Nonlinear shallow water (NSW) equations

∂tU + ∇x · F(U, b) = S(U, b)
▶ U: contains the data of the water height and horizontal velocities;
▶ b: describes the bottom topography;
▶ F: represents the wave transport (nonlinear flux);
▶ S: adds physical effects to the solution (e.g. friction, Coriolis effects...).

Why are these models important?

▶ Used to simulate tsunamis, storm surges and flooding events;
▶ Help to predict the impact of waves on infrastructure and coastal

populations.

Designing numerical methods for free-surface flows towards reliable wave-structure interactions



How can we solve these equations? 6/11

Some questions

1. Why do we model physical phenomena with PDEs?

2. What are the water waves equations?

3. How can we solve these equations?

4. What is the idea behind our approach?

5. How well does it perform and where is it going?

Designing numerical methods for free-surface flows towards reliable wave-structure interactions



How can we solve these equations? 7/11

Complexity of solving PDEs

No analytical solution in general

PDEs like the shallow water equations usually cannot be solved analytically:
▶ shocks, dry zones and nonlinearities can also prevent explicit solutions;
▶ only partial theoretical results are available (e.g. existence or uniqueness

under restrictive assumptions).
↪→ To obtain actual solutions, we rely on numerical analysis framework.

Numerical analysis of partial differential equations

 Building a rigorous and consistent approximation of the continuous problem.
Indeed, we want to ensure:
▶ Accuracy — capturing the solution and its potential singularities;
▶ Stability/Robustness — prevent non-physical behavior, while being able

to handle complex situations.

 Most existing methods fail to meet all these goals at once!
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Combining the best of both worlds

Objectives

Î Designing a numerical approximation that remains mathematically consis-
tent to the PDE, achieving high accuracy in smooth regions and robustness
in challenging flow conditions!

Coupling two complementary methods

▶ Discontinuous Galerkin (DG): highest-order accuracy
↪→ but may become unstable or oscillatory near discontinuities.

▶ Finite Volume (FV): robust in presence of nonlinearities or dry zones
↪→ but usually limited to low-order accuracy.

 Combining adaptively between DG and FV frameworks
↪→ Weighs precision against robustness as needed!
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Some numerical results with analytical solutions
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Simulation of a rock-wave interaction
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Figure: Snapshots of the water elevation at several times (and link to simulation).
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Ph.D. objectives

We want an ideal scheme to solve the shallow water equations, such that we
can then study:

wave-structure interactions

From the theory... to its potential applications...
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Thank you for your attention!

Figure: The Great Wave of Kanagawa, Hokusai, 1830.

 E-mail: sacha.cardonna@umontpellier.fr
� Website: sachacardonna.github.io
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