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ONGOING & UPCOMING WORK

1. Adapting this stabilization method on two-dimensional
Shallow Water equations, in order to compute realistic
simulations;

2. Searching for a theoretical model combining 2D SW
equations with a floating object;

3. Developing a new scheme solving the new model with
this family of numerical methods.
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Nonlinear Shallow Water equations
The study of Shallow Water equations holds significant importance in the field of applied mathe-
matics and fluid dynamics due to its capacity to model hydrodynamic flows in environments where
the horizontal length scales are much larger than the vertical depth, such as oceans, rivers, and
coastal areas.
The 1D pre-balanced Nonlinear Shallow Water equations can be described as an hyperbolic
system with source term:

∂tv + ∂xF (v, b) = B(v, ∂xb) ⇐⇒
{
∂tη + ∂xq = 0

∂tq + ∂x
(
uq +

g(η2−2ηb)
2

)
= −gη∂xb

where the physical functions are defined as follows, with H+ = {(η, q) ∈ R2 | H := η−b ≥ 0}:

• b : R → R is the topography parametrization;

• v : R× R+ → H+ is the vector gathering total elevation η and discharge q;

• F : H+ × R → R2 is the nonlinear flux function;

• B : H+ × R → R2 is the source term depending on topography.

These equations, obtained by theoretical derivation of Euler system, provide a simplified yet pow-

erful framework for understanding and predicting phenomena such as tidal waves, tsunamis, and

storm surges, offering crucial insights for disaster preparedness and environmental management.

Furthermore, they serve as a fundamental tool in the numerical analysis for the development of

efficient computational algorithms, enhancing the accuracy and reliability of simulations in geo-

physical flows.

Issues of DG schemes on nonlinear hyperbolic problems

© The Discontinuous Galerkin (DG) finite element method is interesting for its ability to com-
bine features from both Finite Volume (FV) and Finite Element (FE) methods, offering high accu-
racy and flexibility in handling complex geometries and adaptive mesh refinements. Moreover,
its local discontinuous formulation makes it highly parallelizable and suitable for large-scale
computations on modern high-performance computing architectures, enhancing its applicability
to a wide range of scientific problems.

§ Nevertheless, when dealing with nonlinear hyperbolic equations, we can observe the pres-

ence of non-physical oscillations when approaching discontinuities or strong gradients, leading

to, for example, non-preservation of maximum principle, or/and loss of water height positiv-

ity in Shallow Water context, even for smooth solutions.

Assembling DG accuracy with FV robustness
We introduce a novel discretization method termed Monolithic DG-FV subcell convex property
preserving schemes. This method is grounded in a Discontinuous Galerkin (DG) formalism
with an arbitrary order of accuracy and interprets the DG scheme as a Finite-Volume (FV)-like
approach on a sub-partition, characterized by reconstructed high-order interface fluxes.

Subcell decomposition of a cell ωi through k + 2 sub-flux points.

The method lies on the incorporation of blended fluxes, which are convex combinations of
reconstructed DG fluxes with first-order FV fluxes. The blending coefficients are meticulously
computed for each time step and each subcell interface to ensure adherence to several critical
convex properties, including the discrete maximum principle, water-height positivity, and entropy
preservation.

Monolithic subcell convex property preserving scheme

1st step − Reformulation of DG scheme to subcell scale

Theorem. Let Ω ⊂ R such that Ω =
⋃

ω∈Th
ω. The NSW-DG global formulation∑

ω∈Th

∫
ω
∂tvhφdx−

∑
ω∈Th

∫
ω
Fh∂xφdx+

∑
ω∈Th

[
φF

]
∂ω

=
∑

ω∈Th

∫
ω
Bhφdx,

for all φ ∈ Pk(Th), can be written as the subcell FV-like following semi-discrete formulation:

∂tvω = −
1

|Sω
m|

(
F̂ω
m+ 1

2

− F̂ω
m− 1

2

)
+B

ω
m, ∀m ∈ [[1, k + 1]],

where vω
m = (ηωm, qωm)t and B

ω
m are respectively the mean values of vω and Bω on the subcell

Sω
m, i.e.

vω
m :=

1

|Sω
m|

∫
Sω
m

vω
hdx, B

ω
m :=

1

|Sω
m|

∫
Sω
m

Bω
h dx.

2nd step − Numerical scheme

Considering a mesh element ωi = [xi− 1
2
, xi+ 1

2
] such that ωi :=

⋃
m∈[[1,k+1]] S

i
m, the m

interior blended fluxes expression are given by

F̃m+ 1
2
= F∗,FV

m+ 1
2

+Θm+ 1
2

(
F̂m+ 1

2
−F∗,FV

m+ 1
2

)
,

where we take the blending coefficient Θm+ 1
2
:= diag

(
θm+ 1

2
, θm+ 1

2

)
, the first-order FV flux

F∗,FV, and F̂ the DG high-order reconstructed flux.

Proposition. Considering a Forward Euler time integration, the monolithic DG-FV convex prop-
erty preserving scheme is

vi,n+1
m = vi,n

m −
∆tn

|Si
m|

(
F̃ i
m+ 1

2

− F̃ i
m− 1

2

)
+∆tnB

i
m.

3rd step − Computation of blending coefficient

Theoretical proofs on blending coefficient can get us explicit formulas to:

• Preserve at subcell scale a local maximum principle with θLMP;

• Ensure that our solution is in the open convex set H+, i.e. preserving water height
positivity with θH

+
;

• Have conservation/dissipation of entropies on cell/subcell scale with θS .

We just need to compute every blending coefficient for each time step at each subcell interface,
and taking the minimum of desired properties to assure the stability of our method:

θm+ 1
2
:= min

(
θLMP
m+ 1

2

, θH
+

m+ 1
2

, θS
m+ 1

2

)
∈ [0, 1].

Numerical validations

Dam-break on wet bed (P3

solution on 50 cells)
Order computation for Pk

(k = 1, 2, 3)
Dam-break on dry bed (P6

solution on 10 cells)

Dam-break on wet bed. Evaluates the scheme’s ability to accurately simulate the dy-

namics of rapid water flow over an initially wet surface, crucial for predicting flood wave

propagation and interaction with existing water bodies.

Dam-break on dry bed. Assesses how well the scheme transitions from dry to wet conditions,

vital for flood risk analysis in dry areas. Classical DG schemes’ limitations in handling wet-dry

interfaces often result in numerical issues.

Order computation. Essential for assessing a numerical scheme’s accuracy and efficiency

through error reduction relative to mesh refinement, guiding scheme selection or enhancement

for complex fluid dynamic (computation realized on a smooth solution).


