Corection Interno 2

Exercise 1

Soiet
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 et $g: \mathbb{R}^3 \longrightarrow \mathbb{R}$ $(x,y) \longmapsto (x,xy) \mapsto (x,x,y) \mapsto (x,y,y) \mapsto (x,y,y)$

1) gof =
$$g(f(x,y)) = ay cos(xy) exp(y^2)$$
, et $gof: \mathbb{R}^2 \rightarrow \mathbb{R}$.

2)
$$\partial_x(y\circ f)(x,y) = y co(xy) exp(y^2) - y^2 sim(xy) exp(y^2)$$
.

$$o \partial_y(g \circ f)(x,y) = coo(xy) \exp(y^2) - x y \sin(xy) \exp(y^2) + 2xy^2 coo(xy) \exp(y^2)$$

3) •
$$\int ac_{(x,y)} f = \begin{pmatrix} -y \sin xy & -x \sin xy \\ 0 & 1 \\ \exp(y^2) & 2xy \exp(y^2) \end{pmatrix}$$

$$\begin{aligned}
\overline{\Delta}_{\alpha c}(x,y)(g \circ f) &= \left(y e^{y^2} \cos x y e^{y^2} - y \cos x y\right) \begin{pmatrix} -y \sin x y - x \sin x y \\ 0 & 1 \\ \exp(y^2) - 2x y \exp(y^2) \end{pmatrix} \\
&= \left(y \cos(x y) \exp(y^2) - y^2 \sin(x y) \exp(y^2) \\ \cos(x y) \exp(y^2) - x y \sin(x y) \exp(y^2) + 2x y^2 \cos(x y) \exp(y^2) \right) \\
&= \left(\partial_x (g \circ f) - \partial_y (g \circ f)\right).
\end{aligned}$$

Exercia 2

Thirsieme: Soit $f: U \to \mathbb{R}$ de lanz C^1 seu U severt de \mathbb{R}^2 et $(x_0, y_0) \in U$. Si $f(x_0, y_0) = 0$ et $\partial_y f(x_0, y_0) \neq 0$ alors $\exists I$ intervalle severt contenent x_0 et une unique fondrison $f: I \to \mathbb{R}$ de clare C^1 $f_q:$

1)
$$\varphi(x_0) = y_0$$
 2) $f(x, \varphi(x)) = 0 \ \forall x \in I$ 3) $\varphi'(x) = -\frac{\partial_x f(x, y)}{\partial_y f(x, y)} \ \forall x \in I$

- 4) La disite tangente à $y = \varphi(x)$ en $x = x_0$ est d'équation $y = \varphi'(x_0)(x x_0) + y_0$ 1) On considére l'équation (E): $xe^y + ye^x = 0$. Pau monten qu'elle définit une unique fonction $y = \varphi(x)$ au voirinage de (0,0), on monte alors, en posent $F(x_1y) = xe^y + ye^x$, les 3 conditions suivante:
 - (i) F continument différentiable au voisinage de (0,0): elle est somme de produits de fonctions continument différentiable donc elle l'est aussi.

(ii)
$$F(0,0) = 0$$

(iii)
$$\partial_{y} F(0,0) = (xe^{y} + e^{x})(0,0) = 1 \neq 0$$

On a les trois conditions pour invoquer le théorème des fonctions implicites: elle définit donc une unique fonction φ telle que $y = \varphi(x)$ au roininage de (0,0).

2) Le DL de Taylor à l'ordre 2 de 4 centré en x=0 est:

$$\varphi(x) = \varphi(0) + \varphi^{(0)}(x-0) + \varphi^{(0)}(0)(x-0)^{2} + o((x-0)^{2})$$

*
$$\varphi(0) = 0$$
 can $\varphi(0)$ est le y tq $F(0,y) = 0$.

$$* \varphi'(x) = \left(\frac{ye^x + e^y}{xe^y + e^x}\right)' = \frac{y(xe^y + e^x) - (ye^x + e^y)e^y}{(xe^y + e^x)^2} \quad \text{et} \quad \text{donc}$$

$$\psi''(0) = \frac{y(0+1) - (y+e^y)e^y}{1^2} = y - ye^y - e^{2y}$$

Finalement le DL est: $\varphi(x) = (y + e^y)x + (y - ye^y - e^{2y})x^2 + o(x^2)$.

Exercice 3

Soit UCR' auxent. On définit la divergence:

$$din(X): x \in U \longrightarrow \sum_{i=1}^{m} \partial_{x_i} X_i(x)$$

1) Soit $V \in \mathbb{R}^n$ et $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 . On note $X: U \to \mathbb{R}^n$ telle que X(x) = f(x)V.

On a donc $X(x) = (f(x)V_1, f(x)V_2, -, f(x)V_n)^T$. Aimsi $\forall i \in \mathbb{I}_1, n\mathbb{J}$.

$$\partial_{x_i}(f(x)V_i) = V_i \partial_{x_i} f(x)$$
 et donc on α finchement $\operatorname{din}(X)(x) = \sum_{i=1}^{m} \partial_{x_i} X_i(x) = \sum_{i=1}^{m} V_i \partial_{x_i} f(x) = V \cdot \nabla f(x)$

2) Soit $X: U \to \mathbb{R}^n$ un champ de vectien de \mathcal{C}' sur U, et $g: U \to \mathbb{R}$ de clane \mathcal{C}^{\perp} .

On calcule
$$gX = (gX_1, -, gX_n)$$
 alons $\forall i \in [1, m]$, $\partial_{x_i}(gX_i) = X_i \partial_{x_i}q + g\partial_{x_i}X_i$,

La divergence de gx estadons

$$div(gX)(x) = \sum_{i=1}^{M} (X_i \partial_{x_i} g + g \partial_{x_i} X_i)$$
$$= \nabla_g(x) \cdot X(x) + g(x) div(X)(x).$$

Exercice h

Voin code.

1) •
$$\partial_{x}f(x,y) = \frac{x^{2}-2x(x+y)+y^{2}+1}{(x^{2}+y^{2}+1)^{2}}$$
 • $\partial_{y}f(x,y) = \frac{x^{2}+y^{2}-2y(x+y)+1}{(x^{2}+y^{2}+1)^{2}}$

2) On suit que $\partial_x f(0,0) = \partial_y f(0,0) = 1$. On l'équation du plan tangent à la surface z = f(x,y) en (0,0) s'éait $z - f(0,0) = \partial_x f(0,0) (x-0) + \partial_y f(0,0) (y-0)$