Correction

Réponse 1. Il est d'abord nécessaire que f soit continue en 1. On a f(1) = 1 et la limite à droite de f en 1 vaut a + b + 1. On doit donc avoir a + b + 1 = 1, soit b = -a.

Étudions maintenant la dérivabilité en 1. La fonction f coïncide avec la fonction $x\mapsto \sqrt{x}$ sur [0,1]. La dérivée de $x\mapsto \sqrt{x}$ étant égale à $x\mapsto \frac{1}{2\sqrt{x}}, \ f$ admet une dérivée à gauche en 1 qui vaut 1/2.

D'autre part, f coïncide sur $[1, +\infty[$ avec la fonction $x \mapsto ax^2 - ax + 1$, donc la dérivée est $x \mapsto 2ax - a$. La fonction f est donc dérivable à droite en 1, de dérivée a.

Finalement, la fonction f sera dérivable en 1 si et seulement si les dérivées à droite et à gauche coïncident. Le seul moyen de définir f de sorte que ce soit une fonction dérivable en 1 est donc de poser $a = \frac{1}{2}$ et $b = -\frac{1}{2}$.

Réponse 2. Calculons les primitives données.

1. L'ensemble sur lequel cette primitive a un sens est $]-\infty,2[\ \cup\]2,+\infty[$ (pour avoir $x\neq 2$). On remarque ensuite que

$$\frac{x+3}{x+2} = \frac{(x+2)+1}{x+2} = 1 + \frac{1}{x+2}.$$

Ainsi, l'intégrale se réécrit

$$I_1 = \int \left(1 + \frac{1}{x+2}\right) dx = \int 1 dx + \int \frac{1}{x+2} dx.$$

Les primitives de chaque terme sont

$$\int 1 dx = x + C$$
 et $\int \frac{1}{x+2} dx = \ln|x+2| + C$,

donc on obtient finalement

$$I_1 = x + \ln|x + 2| + C$$
, où $x \neq 2$.

2. On travaille ici sur $\mathbb{R} \setminus \{x^*\}$ (où $x^* = \ln(\pi)$ est la solution de l'équation $e^x = \pi$). On effectue le changement de variable $u = e^x$. Ainsi, $du = e^x dx$ et $e^x = u$. L'intégrale devient :

$$I_2 = \int \frac{u}{u - \pi} \cdot \frac{\mathrm{d}u}{u} = \int \frac{1}{u - \pi} \,\mathrm{d}u.$$

La primitive de $\frac{1}{u-\pi}$ est $\ln |u-\pi|$, donc on obtient

$$I_2 = \ln|u - \pi| + C.$$

En revenant à la variable x, on a $u = e^x$, d'où

$$I_2 = \ln |e^x - \pi| + C$$
, où $e^x \neq \pi$ (c'est-à-dire $x \neq \ln(\pi)$).

Réponse 3. Soit $f(x) = \frac{x}{1+|x|}$.

- 1. f est bien définie et continue sur \mathbb{R} comme quotient de fonctions continues dont le dénominateur ne s'annule pas.
- 2. Si $x \in \mathbb{R}$,

$$f(-x) = \frac{-x}{1+|-x|} = \frac{-x}{1+|x|} = -f(x)$$

et donc f est impaire. Si $x \ge 0$,

$$f(x) = \frac{x}{1+x} = 1 - \frac{1}{1+x},$$

qui est strictement croissante sur $[0, +\infty[$. En effet, $x \to 1 + x$ est croissante donc $x \to \frac{1}{1+x}$ est décroissante et donc $x \to 1 - \frac{1}{1+x}$ est croissante. Comme f est impaire et strictement croissante sur $[0, +\infty[$, alors f est strictement croissante sur \mathbb{R} .

3. Comme f est continue et strictement croissante sur \mathbb{R} , alors, d'après le théorème de la bijection réciproque, f est bijective de \mathbb{R} sur $f(\mathbb{R}) = \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)$. Or

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 - \frac{1}{1+x} \right) = 1.$$

Par imparité,

$$\lim_{x \to -\infty} f(x) = -1.$$

Donc $f(\mathbb{R})=]-1,1[$. Si $y\in [0,1[$, résolvons l'équation $y=\frac{x}{1+x}$. Si x est solution de cette équation, alors y(x+1)=x, donc y=x-xy=x(1-y), et donc

$$x = \frac{y}{1 - y}.$$

Vérifions que $\frac{y}{1-y}$ est l'unique antécédent de y par f. Si $y \in [0,1[$, alors $\frac{y}{1-y}>0$ et donc

$$f\left(\frac{y}{1-y}\right) = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = \frac{\frac{y}{1-y}}{\frac{1-y+y}{1-y}} = y.$$

Donc, pour $y \in [0, 1[$,

$$f^{-1}(y) = \frac{y}{1-y}.$$

Si $y \in]-1,0[$, alors $-y \in [0,1[$ et

$$y = f(x) \iff -y = f(-x) \iff -x = \frac{-y}{1 - (-y)} \iff x = \frac{y}{1 + y}.$$

Donc, si $y \in]-1,0[$,

$$f^{-1}(y) = \frac{y}{1+y}.$$

On conclut que

$$f^{-1}(y) = \begin{cases} \frac{y}{1-y} & \text{si } y \in [0,1[,\\ \frac{y}{1+y} & \text{si } y \in]-1,0[. \end{cases}$$

Autrement dit,

$$f^{-1}(y) = \frac{y}{1 - |y|}.$$

Réponse 4. L'équation différentielle (E) se réécrit

$$\frac{dy}{dt} = \frac{1+y^2}{2y}.$$

On sépare les variables et on intègre :

$$\int \frac{2y \, dy}{1 + y^2} = \int dt.$$

Donc il existe une constante $C \in \mathbb{R}$ telle que y et t sont liées par la relation

$$\ln(1+y^2) = t + C.$$

D'après (CI), pour t=0, on a y=5. Donc $\ln(1+5^2)=0+C$, c'est-à-dire $C=\ln(26)$. Donc $\ln(1+y^2)=t+\ln(26)$, donc

$$1 + y^2 = \exp(t + \ln(26)) = 26e^t,$$

ainsi

$$y = +\sqrt{26e^t - 1}$$
 ou $y = -\sqrt{26e^t - 1}$.

Parmi ces deux possibilités, seule la première vérifie la condition initiale y(0) = 5. La solution du problème (E)-(CI) est donc la fonction définie pour $t > -\ln(26)$ par

$$y(t) = \sqrt{26e^t - 1}.$$

Réponse 5. Les solutions de l'équation $\sqrt{x}=x^2$ sont 0 et 1. On en déduit que les courbes d'équations $y=\sqrt{x}$ et $y=x^2$ s'intersectent aux points de coordonnées (0,0) et (1,1). Pour $x\in[0,1],\,\sqrt{x}\geq x^2$. L'aire A recherchée est donc celle qui se trouve sous la courbe d'équation $y=\sqrt{x}$ sur l'intervalle [0,1], à laquelle on retranche l'aire sous la courbe d'équation $y=x^2$ sur l'intervalle [0,1]:

$$A = \int_0^1 \sqrt{x} \, dx - \int_0^1 x^2 \, dx = \left[\frac{x^{3/2}}{3/2} \right]_0^1 - \left[\frac{x^3}{3} \right]_0^1 = \frac{1}{3/2} - \frac{1}{3} = \frac{2}{3} - \frac{1}{3} = \boxed{\frac{1}{3}}.$$